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Bayesian inference offers benefits over maximum likelihood, but it also comes with 
computational costs. Computing the posterior is typically intractable, as is marginalizing that 
posterior to form the posterior predictive distribution. In this paper, we present variational 
prediction, a technique for directly learning a variational approximation to the posterior 
predictive distribution using a variational bound. This approach can provide good predictive 
distributions without test time marginalization costs. We demonstrate Variational Prediction on 
an illustrative toy example.

As a fun aside, in a single page paper, Besag 
(1989) shared the curious formula that appeared 
on a candidate's exam:

Which highlights how one can determine the 
Bayesian posterior predictive distribution without 
marginalization if one knows the likelihood, 
posterior and an augmented posterior.

Variational Prediction uses a learned variational 
augmented posterior to learn how to approximate 
the predictive distribution.

Toy Model
To demonstrate the Variational 
Prediction method we tried it out on a 
simple toy problem.  The generative 
process was:

For the same dataset of 8 data points, 
to the right we show the learned 
predictive distributions.  Below we 
show the corresponding parameter 
distributions.

This objective is a bound on the marginal likelihood:

It naturally extends to conditional modelling:

The objective drives our variational predictive distribution closer to the true 
Bayesian predictive distribution:

For computational ease, we used a MAML inspired implicit variational augmented posterior:

The usual Bayesian generative modelling 
assumption (P) versus what we really want (Q).

Taking the KL divergence between the real world (Q) and the desired world (P) 
gives us the Variational Prediction objective:

The final predictive distributions of several methods on the toy problem. The true distribution and data are shown in blue, the fit 
predictive distribution is shown in orange.

The exact Bayesian posterior for the data shown in blue in fig. 2 is shown on the left. The × marks the true parameter values. The 𝖸 marks 
the MAP parameters, ⅄ marks the BayesDark parameters. The second and last column show the MFVI and uncondVP learned 
approximate posteriors, respectively. For the VP example, we learned a conditional posterior which is hard to visualize, shown is the base 
unconditional posterior that is modified with MAML. For the VP and uncondVP solutions the corresponding learned predictive 
distribution parameters are indicated by +.
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