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Abstract
Robust and effective scaling of models from small
to large width typically requires the precise ad-
justment of many algorithmic and architectural
details, such as parameterization and optimizer
choices. In this work, we propose a new per-
spective on parameterization by investigating a
key assumption in prior work about the alignment
between parameters and data and derive new the-
oretical results under weaker assumptions and a
broader set of optimizers. Our extensive empirical
investigation includes tens of thousands of mod-
els trained with all combinations of three opti-
mizers, four parameterizations, several alignment
assumptions, more than a dozen learning rates,
and fourteen model sizes up to 26.8B parameters.
We find that the best learning rate scaling pre-
scription would often have been excluded by the
assumptions in prior work. Our results show that
all parameterizations, not just maximal update
parameterization (muP), can achieve hyperparam-
eter transfer; moreover, our novel per-layer learn-
ing rate prescription for standard parameterization
outperforms muP. Finally, we demonstrate that
an overlooked aspect of parameterization, the ep-
silon parameter in Adam, must be scaled correctly
to avoid gradient underflow and propose Adam-
atan2, a new numerically stable, scale-invariant
version of Adam that eliminates the epsilon hy-
perparameter entirely.

1. Introduction
A neural network parameterization is a prescription for scal-
ing a set of important quantities with respect to a set of scal-
ing dimensions. Most often, the parameterized quantities
include the initialization scale, parameter multipliers and
learning rate, and scaling dimensions may include model

1Google DeepMind 2MIT 3Work done at Google DeepMind.
Correspondence to: Katie Everett <everettk@google.com>.

Proceedings of the 41 st International Conference on Machine
Learning, Vienna, Austria. PMLR 235, 2024. Copyright 2024 by
the author(s).

width, model depth, context length, batch size and training
horizon. Parameterizations with well-understood scaling
behavior can prescribe the exponents for these quantities
to ensure that the training dynamics behave in a stable and
predictable manner as the model increases in scale.

When exponents are not carefully selected, models can have
scaling mismatches that are not obvious from experiments
at small scale. One such mismatch can occur in the learning
rate exponents between different layers in a neural network:
while most models currently train with a global learning
rate, where all parameters in the model are updated with
the same learning rate, this constrains all layers to use the
same exponent when differing exponents may be required.
For example, we will see this phenomenon in standard pa-
rameterization models trained with stochastic gradient de-
scent (SGD). Under common assumptions, the hidden layer
learning rate would ideally scale like O(1/

√
n) whereas the

readout layer learning rate would scale like O(1/n) where
n is the model width. With a single global learning rate, we
are forced to make one of two bad choices: either we choose
a learning rate that scales like O(1/

√
n), which makes non-

trivial updates to the hidden layer but causes the readout
layer to explode with scale, or we use a learning rate that
scales like O(1/n), which preserves the readout layer stabil-
ity but causes “vanishing” updates to the earlier activations
in the sense that the updates approach zero as the width
goes to infinity. This mismatch may persist silently until
the model is scaled past a threshold where the difference
in exponents dominates over other factors: a risky situation
in the current “train once” era of very large models. This
strongly motivates a principled understanding of parameter-
ization and well-defined scaling limits rather than relying
solely on extrapolation of empirical results.

In addition, parameterizations that are implemented with a
particular functional form can enable hyperparameter trans-
fer across scales, where relatively cheap hyperparameter
search using small models can be used to select hyperpa-
rameters for larger, more expensive models (Yang et al.,
2022). This functional form specifies each parameterized
quantity using a constant multiplicative factor that is typi-
cally determined empirically along with a scaling exponent
that is motivated theoretically. This recipe for parameterized
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Scaling Exponents Across Parameterizations and Optimizers

quantities, where

parameterized
quantity = empirical

constant
·
(

scaling
dimension

)theoretical
exponent

allows for the reuse of the constant factors: when the scaling
behavior is fully encapsulated by the theoretical exponent,
the optimal empirical constant is the same across scales.
We can therefore determine the optimal constant factors
via hyperparameter search on small models and reuse them
on large models where hyperparameter search would be
expensive or impossible.

Among the scaling dimensions, the existing literature for
width scaling has the most extensive theoretical results but
important open questions remain. Yang & Hu (2021) and
Yang & Littwin (2023) define a space of width-scaling pa-
rameterizations for SGD and Adam respectively. Based on
the goals of ensuring the activations remain at constant scale
and the logits do not exceed constant scale with respect to
width, they derive constraints for stability and non-triviality
of a parameterization that predict how the learning rate
should scale with width. The derivations of these constraints
make a key assumption: the updates to the parameters are
assumed to be sufficiently correlated with the data distri-
bution to impact the scaling exponent of the activations.
We refer to this correlation as “alignment” because, when
correlated, the parameter and data vectors point in similar
directions. However, the literature is lacking in extensive
empirical measurements of when, where, and how much
alignment accumulates between the parameters and activa-
tions during training and its impact on the scaling exponents
of the learning rate.

In this paper, we take a broad perspective on the theory
and practice of width scaling across parameterizations and
optimizers. Our theoretical contributions consider a more
general space of parameterizations which explicitly quan-
tifies the contribution of several distinct alignment terms;
under specific alignment assumptions we recover prior work
as a special case. We propose a metric for alignment that
we use in our empirical investigation. In addition, we de-
velop new parameterization theory for a family of adaptive
optimizers with parameter scaling, including Adafactor.

In our experiments, we measure alignment throughout train-
ing across optimizers, parameterizations and model sizes.
Our measurements suggest that existing theory may be
overly conservative, thereby excluding interesting param-
eterizations. We show that for all parameterizations and
optimizers, there are theoretically motivated per-layer learn-
ing rate exponents that improve performance over global
learning rate baselines, and that in numerous settings the
best performing exponents would have been excluded by
the alignment assumptions of prior work.

In particular, a novel per-layer learning rate prescription for

standard parameterization is shown to outperform muP: we
scale the learning rate for the embedding layer as O(1) and
the learning rate for hidden and readout layers as O(1/n)
for standard parameterization, and this outperforms all other
combinations of parameterizations and learning rate pre-
scriptions for Adam. In addition, while prior work empha-
sizes the hyperparameter transfer properties of muP specifi-
cally (Yang et al., 2022), we show that all parameterizations
can perform hyperparameter transfer. We introduce constant
multiplicative factors to the per-layer learning rate prescrip-
tions and show that tuning these factors is both essential
and practical: the constants can be tuned at relatively small
scale and successfully reused across model sizes up to 26.8
billion parameters, inducing substantial performance gains.

Finally, we consider the epsilon hyperparameter in Adam
and similar adaptive optimizers. Our theoretical prediction
that the mean-field parameterization will be most sensitive
to epsilon underflow is validated in our experiments. We
see significant performance improvements from three strate-
gies to mitigate epsilon underflow, including our proposal
Adam-atan2 that eliminates epsilon entirely. After address-
ing epsilon underflow, parameterizations that are theoreti-
cally equivalent give very similar performance, illustrating
that finite precision plays a practical role in the study of
parameterization.

2. Background
2.1. Parameterizations and Optimizers

We define a width-scaling parameterization as in Yang &
Hu (2021) as the prescription of the scaling exponents for
three quantities on each layer: (1) the initialization variance
for the parameters, (2) a parameter multiplier1 by which
the trainable parameter weights are multiplied during the
forward pass, and (3) the learning rate. It is typical for
different layer types (embedding, hidden, and readout) to
use different parameterizations within the same network.

We will consider all combinations of four common param-
eterizations and three common optimizer families. Our
parameterizations, shown in Table 1, include standard pa-
rameterization (Neal, 1996; Glorot & Bengio, 2010; He
et al., 2015), Neural Tangent Kernel (NTK) parameteriza-
tion (Jacot et al., 2018), Maximal Update parameterization
(muP) (Yang & Hu, 2021), and Mean-Field parameteriza-
tion (MFP) (Mei et al., 2018; Bordelon & Pehlevan, 2022).
Following convention, the names of parameterizations will
refer to the initialization scale and parameter multipliers,

1The parameter multiplier is a constant that multiplies the out-
put of the matrix multiplication in the layer during the forward
pass. The trainable parameters are updated during training but
the parameter multiplier is not. However, the backpropagated
gradients for the parameters will include this multiplier as a term.
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Initialization
Variance

Parameter
Multiplier

Gradient SGD LR,
Full Align

Adam LR,
Full Align

Adafactor LR,
Full Align

SGD LR,
No Align

Adam LR,
No Align

Adafactor LR,
No Align

Standard
Embedding 1 1 1/

√
n

√
n 1 1

√
n 1 1

Hidden 1/n 1 1/
√
n 1/

√
n 1/n 1/

√
n 1 1/

√
n 1

Readout 1/n 1 1 1/n 1/n 1/
√
n 1/

√
n 1/

√
n 1

NTK
Embedding 1 1 1/

√
n

√
n 1 1

√
n 1 1

Hidden 1 1/
√
n 1/n

√
n 1/

√
n 1/

√
n n 1 1

Readout 1 1/
√
n 1/

√
n 1 1/

√
n 1/

√
n

√
n 1 1

muP
Embedding 1/n

√
n 1/

√
n 1 1/

√
n 1 1 1/

√
n 1

Hidden 1/n 1 1/n 1 1/n 1/
√
n

√
n 1/

√
n 1

Readout 1/n 1/
√
n 1/

√
n 1 1/

√
n 1 1 1 1

Mean Field
Embedding 1 1 1/n n 1 1 n 1 1
Hidden 1 1/

√
n 1/n1.5 n 1/

√
n 1/

√
n n1.5 1 1

Readout 1 1/n 1/n n 1 1 n
√
n 1

Table 1. Summary of parameterizations, their gradients and the learning rates derived in Section 3. Left: Parameterizations and
gradients at initialization for width n. Middle: Max stable per-layer learning rate scaling for each optimizer assuming “full alignment”
where αl = ul = 1, ωl = 1/2 for all layers l. Right: Max stable learning rates assuming “no alignment” where αl = ωl = ul = 1/2 for
all layers.

although formally speaking, the learning rate prescription is
an essential element of a parameterization.

We select optimizers that represent three distinct width-
scaling regimes: Stochastic Gradient Descent (SGD),
Adam (Kingma & Ba, 2014), and Adafactor (Shazeer &
Stern, 2018) due to their varying relationships between the
parameter, gradient, and update scales. Our theoretical per-
spective focuses on the width-scaling relationships between
these elements and will omit more specific optimizer fea-
tures like momentum and gradient or update clipping. SGD
represents optimizers where the scale of the update matches
the scale of the learning rate times the scale of the gradi-
ents. Adam represents adaptive optimizers where, due to
the normalization by the gradient scale, the scale of the
update matches the scale of the learning rate regardless of
the gradient. Finally, Adafactor represents adaptive opti-
mizers with parameter scaling that normalize the gradient
similarly to Adam but then multiply by the parameter scale.
This results in an update scale that matches the learning
rate scale × the parameter scale; under constant learning
rates, the Adafactor updates match the RMS (or Frobenius)
norm of the parameters. Note that parameter scaling is the
key distinction between the last two regimes: Adam plus
parameter scaling falls into the Adafactor family; Adafactor
with parameter scaling removed falls into the Adam family.

2.2. Stability, nontriviality and feature learning

Yang & Hu (2021) and Yang & Littwin (2023) derive a
system of linear constraints on the exponents of a parame-
terization from the two following concepts: stability, where
the activations are exactly constant scale and the logits are
no more than constant scale, and nontriviality, where the
change in logits after the initialization is at least constant
scale. Note these constraints are defined solely in terms
of the activations and logits, so that only the forward pass
is directly constrained and any constraints on backward

pass quantities like gradients or updates are indirect conse-
quences.

In addition, they define feature learning, where the latent
representations change and adapt to the data during training,
as a constant scale change after initialization in the activa-
tions directly before the readout layer. These activations are
the features or latent representations learned by the model,
which, for example, could be reused with another classifier
if we were to remove the readout layer. When the change
in these activations is exactly constant scale, the change is
meaningful in the infinite-width limit rather than becoming
infinitesimally small as the width becomes large. Finally,
they fully characterize the infinite-width limits of the space
of width-scaling parameterizations as a dichotomy between
a feature learning regime and a kernel regime.

2.3. Alignment

As we will see in Section 3, the conditions for stability differ
between the first and subsequent forward passes because of
the learning process itself. While the initial random parame-
ters are independent from the data distribution, correlations
can develop over time because the updates carry informa-
tion about the data. Such correlations cause “alignment”
between the parameters and activations, in the sense that
the vectors may point in similar directions. As such, the
norm of the activations after a given layer depends on three
quantities: the scale of the input to the layer, the scale of the
parameters in the layer, and the alignment between the pa-
rameters and the input or “data”. In a matrix multiplication,
when we sum over the interior dimension n, this alignment
contributes a scaling term that is O(

√
n) when there is no

alignment and O(n) when there is significant alignment.

The intuition for this calculation can be seen by consider-
ing the simpler case of the scaling of the inner product of
two random vectors, because the entries in the product of
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a matrix multiplication are each vector-vector inner prod-
ucts themselves. As the length of the two random vectors
becomes large, by straightforward application of the Central
Limit Theorem the inner product is a sample from a normal
distribution, so its norm has two terms coming from the
mean and the variance of this distribution. The takeaway is
that the mean term contributes an O(n) term to the norm of
the inner product and the variance term contributes O(

√
n).

When the mean term is zero because the vectors are zero-
mean and independent, then the variance term dominates
and the inner product scales like O(

√
n). However, when

the vectors are correlated or in the worst case are identical,
then the inner product scales like O(n) because the coef-
ficient to the mean term is a constant. Yang & Hu (2021)
refers to this idea as “Central Limit Scaling” versus “Law
of Large Numbers” scaling owing to the idea that the Law
of Large Numbers governs how the mean converges and the
Central Limit Theorem governs how the variance converges.

This scaling affects the norm of the outgoing activations
from a layer that multiplies its parameter matrix by the input
to that layer. On the first forward pass, due to the random
initialization the parameters cannot be aligned with the data,
so the O(

√
n) scaling holds. However, during the first back-

ward pass, the updates to the parameters are a function of the
first batch of data, so the parameters may become correlated
to the data distribution. As a result, during subsequent for-
ward passes, we can no longer assume perfect independence
between the parameters and data and instead the activations
might scale with up to an O(n) term.

Similar to this alignment between parameter updates and
the data distribution, it is also possible to develop alignment
between the parameters in two different layers in the net-
work. For example, the backpropagated gradients used to
update an earlier layer are a function of the parameters in
later layers, which can introduce correlation between the
earlier layer updates and the later layer parameters. The
consequence of either type of alignment is that the learning
rate needs to counteract the O(

√
n) or O(n) term, so the

maximal stable learning rates can be smaller by a factor of
O(
√
n) when there is significant alignment than when there

is none.

3. Theoretical Contributions
In this section we make four theoretical contributions. First,
we define a general space of width-scaling parameterizations
that explicitly quantifies the contribution of three alignment
terms. Rather than making specific assumptions about align-
ment and then deriving which parameterizations are stable
and nontrivial under those assumptions, as in Yang & Hu
(2021) and Yang & Littwin (2023), we propose general sta-
bility and nontriviality constraints as a function of those
alignment variables. Second, we propose theory for Adafac-

tor or other adaptive optimizers using parameter scaling.
Third, for all parameterizations × optimizers, we find the
maximum stable learning rate for each layer type as a func-
tion of the alignment terms, and compute the learning rate
exponents under two specific alignment assumptions, which
we refer to as “full alignment” and “no alignment”. While
the alignment assumptions in Yang & Hu (2021) prevent
standard and NTK parameterizations from feature learning
regardless of the per-layer learning rate prescription, under
our assumptions of either full alignment or no alignment, all
parameterizations have per-layer learning rates in the fea-
ture learning limit. Fourth, we propose the alignment ratio
metric that we will use for empirical investigation, which
measures the contribution of alignment to the activations
during training.

3.1. Model and Notation

Following a similar model and notation as Yang & Hu
(2021), we consider a multilayer perceptron with L hid-
den layers, input and output dimensionality d, hidden layer
dimensionality n, and nonlinearity ϕ : R→ R. The weight
matrices are denoted:

• W1 ∈ Rn×d for the embedding layer

• W2, . . .WL ∈ Rn×n for the hidden layers, and

• WL+1 ∈ Rd×n for the readout layer.

The parameterization for each layer l is specified by three
values {al, bl, cl}, where:

• the parameter multiplier is n−al ,

• the parameter initialization is Wl ∼ N (0, n−2bl), and

• the learning rate ηl ∝ n−cl with width-independent
constant of proportionality that we omit here.

For an input x ∈ Rd, the model has activations z1, . . . zL
and outputs logits zL+1:

z1 = ϕ(n−a1W1 · x)
zl = ϕ(n−alWl · zl−1), l ∈ [2, L]

zL+1 = n−aL+1WL+1 · zL

In addition, we define ∆W t
l and ∆ztl to be the change

in parameters and activations, respectively, in layer l be-
tween initialization and step t. We omit the time superscript
throughout this section when it is clear from context or the
statement holds for any O(1) value of t.

We are interested in the scaling behavior of various quanti-
ties as we increase the width or hidden layer dimensionality
n, while other dimensions are held constant. In particular,
we assume input and output dimensionality d, the depth L,
and the number of training steps T are fixed and constants
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Figure 1. The four parameterizations occupy two equivalence classes at initialization, which differ only in the readout layer.
Each parameterization is plotted for each layer type at (al, bl) where al is the negative parameter multiplier exponent and bl is the
negative initialization standard deviation exponent. The black dashed lines span the equivalence classes for each layer. The region where
parameterizations are stable is highlighted in gray: this is the line a1 + b1 = 0 for the embedding layer, the line al + bl = 1/2 for hidden
layers, and the region aL+1 + bL+1 ≥ 1/2 for the readout layer. For equivalence during training, the learning rates must also obey the
optimizer-specific equivalence relations.

with respect to width. We omit batch size dimensions, as-
suming the batch size is one. We assume the nonlinearity
ϕ has bounded derivative so its contribution is negligible
in the large-width limit, and as such treat it as the identity
function in our derivations. Throughout this section, we
refer to the “scale” of quantities, meaning their exponents
with respect to width in the large-width limit. For formal
definitions, additional assumptions, and a full derivation see
Appendix B.

3.2. Equivalence classes

These parameterizations occupy equivalence classes be-
cause in any layer we can “factor out” a constant term from
the parameter initialization into the parameter multiplier,
which exactly preserves the output of the forward pass while
multiplying the gradients by this constant. This change in
the gradients can then be “corrected for” by modifying the
learning rate in an optimizer-specific manner.

In this one-dimensional symmetry group parameterized by
θ, to preserve the forward pass, regardless of the optimizer,
apply

al ← al + θ

bl ← bl − θ.

Then specific to the optimizer, to preserve the effect of the
backwards pass, correct the learning rate according to

SGD: cl ← cl − 2θ

Adam: cl ← cl − θ

Adafactor: cl ← cl.

In particular, under the right learning rates, our four param-
eterizations occupy two equivalence classes: standard and

NTK are equivalent and muP and mean-field parameteriza-
tion are equivalent. In Figure 1, we visualize the subspaces
spanned by the equivalence classes for each layer type: each
parameterization is plotted at (al, bl) for each layer l, and
the dashed lines span the equivalence class (al + θ, bl − θ)
for all values of θ. We see that for both the embedding
layer and the hidden layers, all four parameterizations have
equivalent initializations. However, the readout layer has
two distinct equivalence classes: standard and NTK param-
eterizations have aL+1 + bL+1 = 1/2, corresponding to
constant scale logits at initialization, whereas muP and MFP
have aL+1 + bL+1 = 1, resulting in logits that scale like
1/
√
n at initialization. This difference, specifically the shift

by a factor of
√
n in the readout layer, is the key difference

between the standard + NTK equivalence class and the muP
+ MFP equivalence class.

In this paper, we will consider all four parameterizations
separately, as these equivalences hold only under infinite
precision, while neural networks regularly encounter finite-
precision effects. These equivalences were observed for
SGD and Adam in Yang & Hu (2021) and Yang & Littwin
(2023) respectively, and we propose this equivalence for
Adafactor.

3.3. Alignment-General Space of Parameterizations

We now propose a general space of parameterizations where
we define three alignment variables and derive the space of
parameterizations that are stable and nontrivial as a function
of these variables. We define a parameterization to be stable
if the activations have exactly constant scale and the logits
have at most constant scale throughout training, and to be
nontrivial if the change in logits after initialization has at
least constant scale.
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r1 := g1 + a1 + c1 ≥ 0 r1 := a1 + c1 ≥ 0 r1 := c1 ≥ 0

rl := min


gl + al + cl − αl

gl + al + cl + rl−1 − ul

1/2 + rl−1 − ωl

≥ 0 rl := min


al + cl − αl

al + cl + rl−1 − ul

1/2 + rl−1 − ωl

≥ 0 rl := min


1/2 + cl − αl

1/2 + cl + rl−1 − ul

1/2 + rl−1 − ωl

≥ 0

where gi := cl ≥ 0

max(aL+1 + bL+1, 2aL+1 + cL+1) + ai

St
ab

le
lo

gi
ts

du
ri

ng
tr

ai
ni

ng

min


aL+1 + bL+1 + rL − ωL+1

2aL+1 + cL+1 − αL+1

2aL+1 + cL+1 + rL − uL+1

≥ 0 min


aL+1 + bL+1 + rL − ωL+1

aL+1 + cL+1 − αL+1

aL+1 + cL+1 + rL − uL+1

≥ 0 min


aL+1 + bL+1 + rL − ωL+1

aL+1 + bL+1 + cL+1 − αL+1

aL+1 + bL+1 + cL+1 + rL − uL+1

≥ 0

cL+1 ≥ 0

Table 2. Constraints for stable parameterizations at initialization and during training.

The activations change after initialization due to both
changes in the parameters in the previous layer and changes
in the activations immediately prior to that layer. Specifi-
cally, starting from the second forward pass, the activations
for layer l are computed as

zl = nal(Wl +∆Wl)(zl−1 +∆zl−1)

= nal(Wlzl−1 +∆Wlzl−1 +Wl∆zl−1 +∆Wl∆zl−1).

The first term Wlzl−1 in the expanded sum contains the
initial random parameters and initial activations, which are
not aligned. The remaining three terms in the sum may have
alignment as they result from updates that might be aligned
to the data distribution or other parameters in the model.

We will define αl, ωl, and ul to be the exponents of the
alignment contributions from these three terms, where the
alignment exponent quantifies how the norm of the product
scales compared to the norm of the factors. We define

• αl to be the alignment exponent for ∆Wlzl−1,

• ωl to be the alignment exponent for Wl∆zl−1, and

• ul to be the alignment exponent for ∆Wl∆zl−1.

so that, for example, ∥∆Wlzl−1∥ scales like
nαl∥∆Wl∥∥zl−1∥. With this definition, αl = 1/2
corresponds to no alignment in the ∆Wlzl−1 term and
αl = 1 corresponds to high alignment.

We next define a feature learning residual quantity rl that
measures how far the parameterization is from the feature
learning regime. For each layer l in [1, L], we define rl as
the negative exponent of the scale of ∆zl, where ∆zl is
the change in activations following layer l during training.

To preserve stability, this change cannot exceed constant
scale, so rl, as the negative exponent, cannot be less than
zero. Feature learning, where the change in activations
immediately prior to the readout layer has constant scale,
then corresponds to rL = 0 exactly. Conceptually, feature
learning occurs if at least one of the embedding or hidden
layers contributes at least one constant scale term to the
activations. Lastly, for convenience, we define gl to denote
the negative exponent of the gradient scale.

3.3.1. STABILITY AT INITIALIZATION

To derive the stability constraints, which are shown in Ta-
ble 2, we will first derive constraints on the initialization
scale and parameter multipliers so that the parameterization
is stable during the first forward pass. In the next subsec-
tion, we will derive constraints for stability during training
that ensure the change in activations after every layer has at
most constant scale and, similarly, we will bound the change
in logits to ensure they do not exceed constant scale. For
a more detailed derivation of the stability constraints, see
Appendix B. For nontriviality, we include the derivation and
constraints in Appendix B.14 and B.15.

During the first forward pass, the conditions for stability
depend only on the parameter initialization and the parame-
ter multipliers, and not on the optimizer, learning rates or
alignment variables because no updates have occurred yet.
For all optimizers, for input data x with constant scale, the
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constraints for stability at initialization are:

a1 + b1 = 0

al + bl = 1/2, l ∈ [2, . . . , L]

aL+1 + bL+1 ≥ 1/2

3.3.2. STABILITY DURING TRAINING

During the second and subsequent forward passes, the con-
straints for stability are specific to the optimizer. In Ap-
pendix B, we derive the constraints on the parameter mul-
tipliers, parameter initialization, and learning rates under
each optimizer that ensure stability during training, that is,
constant activations and at most constant logits. In our no-
tation, recall that rl is the negative exponent of the scale of
∆zl and gl to is the negative exponent of the gradients with
respect to parameters Wl.

For intuition, this derivation first considers the second for-
ward pass, and assuming the constraints for stability at ini-
tialization hold, iteratively adds constraints starting with the
embedding layer and working up to the readout layer, where
each constraint ensures stability of that layer assuming sta-
bility of all earlier layers. We compute the scale of the
change in activations in each layer, and bound its exponent
to be at most zero. Note that in our constraints, this is written
to bound the negative exponent to be at least zero. Simi-
larly, we constrain the logits to stay at most constant scale
in the second forward pass. The constraints derived from
the second forward pass are included in Appendix B.12.

Next, we consider the third forward pass, because the read-
out parameters may change in scale between the first update
and second update. This slightly modifies the constraints
to use the maximum possible scale of the readout param-
eters, which may come from the readout initialization or
the readout update depending on the parameterization. This
produces the final set of stability constraints, as after the
third forward pass the scale of each quantity remains the
same over a constant number of training steps.

We present these constraints for stability during training in
Table 2. The set of constraints has some similarity across
optimizers. The change in activations following a hidden
layer l is computed as the sum of three terms, ∆Wlzl−1,
Wl∆zl−1 and ∆Wl∆zl−1. As the term with the maximum
scale dominates the exponent, the value of rl is the minimum
over three expressions each coming from one of these terms.
The constraint rl ≥ 0 then preserves stability by preventing
any of these terms from exceeding constant scale, where
when rL = 0 exactly, we are in the feature learning regime.
To highlight the differences across optimizers, we note some
of the SGD constraints include the term gl, as the SGD
update depends on the scale of the gradient. Compared
to SGD, the Adam constraints result from removing the
contribution of gl due to the normalization of the gradient

in Adam, even in the readout layer where gL+1 = aL+1.
Then, compared to Adam, the constraints for Adafactor have
additional appearances of bl as a result of the parameter
scaling; in some places this simplifies due to substituting
a1 + b1 = 0 or al + bl = 1/2. Lastly, there is an additional
constraint cl ≥ 0 required for Adafactor to prevent the
parameters from growing exponentially with the number of
training steps as a result of parameter scaling.

3.3.3. PRIOR WORK AS A SPECIAL CASE

We exactly recover the stability and nontriviality constraints
in Yang & Hu (2021) for SGD and Yang & Littwin (2023)
for Adam2 if and only if

• αl = 1 ∀l ∈ [2, L+ 1],

• ωl = 1/2 ∀l ∈ [2, L], and

• ωL+1 = 1.

The choice of αl = 1 on all layers depends on the assump-
tion that updates to the parameters ∆Wl are aligned with
the activations zl−1 due to alignment between the param-
eter updates and the data distribution. We will investigate
settings with and without this assumption.

We note that the assumption ωL+1 = 1, which we will relax,
is at the very core of the theoretical motivation for muP.
Recall that ωL+1 is the alignment exponent for WL+1∆zL,
where WL+1 is the readout layer initialization and ∆zL is
the change in activations immediately prior to the readout
layer resulting from changes in the parameters in earlier
layers. In theory, this alignment could develop when the
gradients propagated to earlier layers contain information
from the initialization parameters in later layers. However,
we also note the assumption of ωl = 1/2 on all layers except
the readout layer assumes that the analogous alignment does
not develop in any earlier layers.

A key consequence of the ωL+1 = 1 assumption is that nei-
ther standard nor NTK parameterizations are able to achieve
feature learning regardless of what learning rate prescrip-
tion is used. Recall that feature learning corresponds to
rL = 0, where the change in activations ∆zL is exactly
constant scale, and that standard and NTK parameteriza-
tions both have aL+1 + bL+1 = 1/2. Therefore, due to the
constraint on the logits that aL+1+ bL+1+ rL−ωL+1 ≥ 0,
it is not possible when ωL+1 = 1 for standard and NTK
parameterizations to have rL = 0 regardless of how it might
be induced. However, the shift in the readout layer in muP
and MFP so that aL+1 + bL+1 = 1 allows these parameteri-

2Yang & Littwin (2023) carefully considers the role of the
epsilon hyperparameter in Adam. This correspondence holds if we
assume what they call faithfulness, which is equivalent to setting
epsilon following the per-layer epsilon prescription we implement
in §4.3. It also holds if we disregard epsilon (i.e. consider epsilon
to be zero) and view Adam as perfectly scale-invariant.
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zations to attain feature learning when ωL+1 = 1.

3.3.4. MAXIMUM STABLE LEARNING RATE
EXPONENTS

We will next define two specific sets of alignment assump-
tions in terms of αl, ωl, and ul and then derive the maximum
stable learning rates shown in Table 1 for each layer and
parameterization under these assumptions. To select these
assumptions, we first consider the types of alignment mea-
sured by each variable and how the alignment assumptions
dictate the maximum stable learning rates.

The ∆Wlzl−1 term, whose alignment is measured by αl,
may have alignment between the parameter updates and
data distribution. If we unroll the layers in the term
∆Wlzl−1 = ∆Wl ·Wl−1 ·Wl−2 . . .W1 ·x, since the param-
eters W1, . . . ,Wl−1 are from the random initialization, any
alignment comes from the matrix multiplication between
the parameter updates ∆Wl and the data x.

In contrast, for the Wl∆zl−1 term, whose alignment is mea-
sured by ωl, the alignment occurs not between parameters
and data, but between the updates to parameters in earlier
layers and the initialization parameters in the later layer
l. Recall that this alignment could develop as the back-
propagated gradients, which are used to update the earlier
layers, depend on the initialization parameters in the later
layers. The final term ∆Wl∆zl−1, whose alignment is mea-
sured by ul, may contain both kinds of alignment, between
the parameters and data or between parameters in different
layers.

In our alignment settings, we will assume that the alignment
between parameters in different layers stays small, and focus
on exploring the range of possible degrees of parameter-to-
data alignment. Specifically, we assume that ωl = 1/2 on
all layers including the readout layer ωL+1 = 1/2. As a
consequence, we will be able to consider feature learning
versions of all four parameterizations.

For the assumptions on αl and ul that measure alignment
between parameters and data, we note that in the stability
constraints, αl and ul always appear in tandem in pairs of
constraints, where in fact the constraints could be rewritten
entirely in terms of the single quantity max(αl, ul − rl−1).
When using the maximum stable learning rates on earlier
layers, rl−1 will be zero, so the learning rate exponents
are constrained by the maximum of αl and ul. We will
therefore consider the two extremes, and make two choices
of alignment assumptions: “full alignment” where αl =
ul = 1 and ωl = 1/2 and “no alignment” where αl =
ul = ωl = 1/2. Intermediate choices where αl = ul takes
a value between 1/2 and 1 would also be interesting for
future work, but scaling studies at practical sizes may not
have sufficient resolution to distinguish smaller variations

in the exponents.

In Table 1, we compute the maximum stable per-layer learn-
ing rate exponents under these two assumptions of full align-
ment and no alignment. Our full alignment per-layer learn-
ing rate prescriptions for standard and NTK differ from prior
work and are in feature learning limits under our assump-
tions. For muP and MFP, our full alignment assumptions
result in learning rate exponents that coincide with prior
work as relaxing the ωL+1 constraint does not impact these
parameterizations. Our no alignment prescriptions are also
in feature learning limits for all parameterizations, and again
differ from prior work that assumed αl = 1.

3.4. Alignment Ratio

The alignment variables αl, ωl, and ul quantify the align-
ment contributions to the activations zl from the individual
terms in the expanded sum (Wl +∆Wl)(zl−1 +∆zl−1) =
Wlzl−1 +∆Wlzl−1 +Wl∆zl−1 +∆Wl∆zl−1. However,
we note that in practice the alignment in the terms in this
sum may interfere constructively or destructively, and the
single alignment quantity that actually governs the scale of
the activations zl is the alignment between (Wl+∆Wl) and
(zl−1 +∆zl−1).

We therefore propose a metric that measures this alignment,
between (Wl +∆Wl) and (zl−1 +∆zl−1), in order to un-
derstand empirically how alignment that accumulates during
training is contributing to the activation scales throughout
the model. This metric is defined on each dense layer and
quantifies the contribution from alignment between the cur-
rent parameters and the current pre-layer activations on the
scaling exponent of the post-layer activations.

Consider a neural network layer l at training step t with
parameters W t

l ∈ Rfan-out×fan-in, and pre-layer activations
ztl−1 ∈ Rfan-in. The alignment between the pre-layer acti-
vations and the rows of the parameter matrix dictates the
scaling term contributed when summing over the fan-in di-
mension in the matrix multiplication, giving an alignment
term with the fan-in as the base of the exponent.

Definition 3.1. We define the log alignment ratio as

At
l = logfan-in

∥W t
l z

t
l−1∥RMS

∥W t
l ∥RMS

∥zt
l−1∥RMS

∈ R,

where the norm is the RMS norm3.

We note that while our theoretical derivations consider expo-
nents in the infinite-width limit, this metric is intentionally
defined at finite size so that we can measure it in practice.
We will see in Section 4.1 that this metric shows conver-
gence within our model sizes suggesting that in practical

3An equivalent definition for the log alignment ratio in terms

of Frobenius norms is At
l = 1 + logfan-in

∥W t
l z

t
l−1∥F

∥W t
l ∥F

∥ztl−1∥F

.
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Figure 2. Alignment is intermediate and highly dynamic throughout training, with parameterization-specific patterns. The log
alignment ratio metric in readout and hidden (MLP) layers across training steps for each parameterization, for Adam 1.9B parameter
models (H = 32, D = 4096, B = 256) using optimal global learning rates. Blue and green curves are for the first and second MLP
layers, respectively, in each Transformer block. Transformer blocks are denoted B0 through B7 in the legend. Orange curves are the
readout layer.

settings this finite size approximation is indicative of large-
width behavior.

4. Experiments
We investigate the role of alignment, per-layer learning rate
exponents and constant factors, and the epsilon hyperpa-
rameter by running tens of thousands of experiments in
a Transformer language model across all combinations of
the three optimizers, four parameterizations, learning rate
sweeps with a granularity of 20.25 or 20.5, and fourteen
model widths ranging up to 26.8 billion parameters.

We use the NanoDO decoder-only Transformer architec-
ture (Liu et al., 2024) employing learned positional embed-
dings, pre-layer norm (Ba et al., 2016; Xiong et al., 2020),
and GeLU nonlinearity (Hendrycks & Gimpel, 2016). All
models are trained on the C4 dataset (Raffel et al., 2020). To
scale the width, we fix the attention head dimension h = 128
and co-scale the model dimension D and the number of at-
tention heads H so that D = H × h. All experiments use
a fixed batch size of 256, context length of 512 and depth
of 8 Transformer blocks. Our fourteen model widths range
from D = 128 to D = 16, 384 corresponding to a range of
9.9 million to 26.8 billion parameters.

All experiments in the main text of the paper train for 50,000
training steps and do not use weight decay. The learning rate
schedule for all experiments uses linear warmup of 1,000
steps followed by a cosine decay schedule, with initial and fi-
nal learning rates of 0.0. We include additional experiments
for compute-optimal training horizons in in Appendix I that
show that moving from the fixed step setting to the compute
optimal setting likely requires sharper decay in the learn-
ing rate exponents. In addition, we include experiments
in Appendix G that suggest our conclusions should trans-
fer to settings using small amounts of weight decay. See
Appendix C for additional experiment and implementation
details.

4.1. Alignment Experiments

We measure the log alignment ratio throughout training for
three model sizes for each parameterization × optimizer,
using a global learning rate that is close to optimal. For
Adam, alignment values for the readout and MLP layers are
shown for model dimension D = 4096 in Figure 2 and full
results including the other optimizers and the dense layers
within the attention block (query, key, value, and output
projection dense layers) are included in Appendix D. All
experiments use batch size B = 256. As expected, the mea-
sured alignment values start at 0.5 due to the independence
between the random initialization and the data, and change
during training as parameters become aligned with the data
or parameters in earlier layers.

The alignment values vary significantly across the training
horizon and the trajectories depend heavily on the param-
eterization and layer type. We see similar values across
three model sizes, suggesting that these model sizes are
sufficiently large for our measurements to be indicative of
large-width behavior. For SGD, the results show high insta-
bility and are difficult to interpret; one consistent pattern is
that NTK and MFP have almost no alignment and STP and
muP have low amounts. Adam and Adafactor show match-
ing trends: the readout layer has the highest peak among
the layers, with high peak readout alignment above 0.9 in
muP and mean-field parameterization and only moderate
peak readout alignment between 0.7 and 0.8 in standard and
NTK parameterizations. In the MLP layers, alignment in all
parameterizations is moderate and does not exceed 0.8.

The high readout alignment early in training that is specific
to muP and MFP parameterizations may result from the
relationship between the readout updates and readout initial-
ization. In standard and NTK parameterizations, the scale
of the readout update matches the scale of the readout ini-
tialization, whereas in muP and MFP, the scale of the update
is larger than the scale of the initialization. At each step,
the parameter updates may be highly aligned with the data
distribution, resulting in high readout alignment early in
training because these highly aligned updates dominate the
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Figure 3. All parameterizations for Adam benefit from per-layer learning rates and tuning per-layer constant learning rate
multipliers. Eval loss comparisons for all parameterizations using Adam across a sequence of interventions. From left to right panels: (a)
global lr exponents + default constants, (b) per-layer lr exponents assuming full alignment + default constants, (c) per-layer lr exponents
assuming full alignment + optimal constants, (d) per-layer lr exponents assuming no alignment + optimal constants.

readout parameters in muP and MFP. However, as more of
these updates accumulate, the alignment actually decreases
to a moderate level, as the sum of the accumulated updates
may be less aligned than the individual updates. In contrast,
in standard and NTK parameterizations, the individual up-
dates may still be highly aligned with the data distribution
without resulting in high readout alignment as they don’t
dominate over the readout initialization.

Overall, these results indicate that the alignment assump-
tions in Yang & Hu (2021); Yang & Littwin (2023) may
be overly conservative; if in practice alignment contributes
less than one to the activation exponents, then the learning
rate exponents can be larger. However, even given these
measurements for alignment, it is not obvious how exactly
the learning rate exponents that control the base or peak
learning rate should be adjusted. First, we see that align-
ment is a dynamical quantity that varies widely throughout
training: even when the readout alignment is close to maxi-
mum early in training for muP and MFP, it is much lower
for the vast majority of training steps. In addition, alignment
varies across layers within the same layer type, which typi-
cally use the same learning rate or at least the same learning
rate exponent. Further, the interaction between the align-
ment measurement and learning rate schedule is complex.
The learning rate schedule likely influences the alignment
measurements, and alignment likely influences the opti-
mal learning rate schedule: one possible role of learning
rate schedules is that the decay counteracts alignment that
develops later in training. Even if we used alignment mea-
surements from experiments under one set of learning rates
to inform adjustments to the learning rate exponents, this
would induce an iterative loop where the adjusted learning
rates would then affect the alignment. We will therefore take
an empirical approach to determine how alignment should
influence the learning rate exponents, and consider several
choices of alignment assumptions for the per-layer learning
rate experiments in the following section.

4.2. Per-layer Learning Rates

All parameterizations have per-layer learning rate exponents
specific to the optimizer and the choice of alignment assump-
tion, as shown in Table 1. In this section, we empirically
validate these theoretical learning rate exponent prescrip-
tions and investigate the impact of tuning the per-layer con-
stant factors on all combinations of parameterizations ×
optimizers. We compare against global learning rates as a
baseline: while global learning rates are in most cases not
theoretically principled, they are the overwhelmingly domi-
nant paradigm in practice. In most settings, the theoretically
ideal learning rate exponents differ across layers, implying
a mismatch in at least some layers when using global learn-
ing rates. However, there are certain cases, such as muP +
SGD + full alignment, or Adafactor + any parameterization
+ no alignment, where the theoretically motivated per-layer
exponents happen to be the same in all layers so that global
learning rate actually coincides with the theoretical pre-
scription. We include experiments using the theoretical
prescriptions from both the full alignment and no alignment
settings since our empirical alignment measurements show
intermediate and highly dynamic values. We first present
the series of experiments for Adam, followed by the results
for SGD+momentum and Adam+parameter scaling.

Additional results are included in the appendix including
additional ablations (Appendix E), eval losses for all settings
for the six largest model sizes (Table E1) and learning rate
sweeps for all settings for SGD (§J), Adam (§K) and Adam
+ parameter scaling (§L).

4.2.1. ADAM

Our first experiment compares per-layer learning rates when
assuming full alignment against the baseline of global learn-
ing rates. For all experiments, we select a base model
dim of b = 1024 and define the learning rate in layer l
as ηl = βn · nb

−cl . We perform a one-dimensional sweep
of βn at each model dim n to determine the best value and
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Figure 4. All parameterizations can perform hyperparameter transfer with the right per-layer learning rate exponents. Top row =
learning rate sweep for all parameterizations using Adam with per-layer learning rates assuming full alignment and optimal constants.
The LR scaling is fully encapsulated by the per-layer LR exponents so the base learning rate is consistent across model widths. Bottom
row = power law fit of optimal LR vs model dim, with exponents close to zero indicating the same base LR can be reused at all model
widths. Only mean-field parameterization deviates slightly from zero, which is improved by addressing epsilon underflow in Section 4.3.

report the eval loss from this best βn. For global learning
rates, cl = 0 for all l, and for per-layer learning rates, cl
follows Table 1. Since there is no contribution from the
learning rate exponents at the base model size, the global
and per-layer learning rate settings coincide exactly at the
base model dim and differ only when scaling away from
the base model size. For Adam, the per-layer results in
Figure 3(b), compared with the global learning rate results
in Figure 3(a), show that standard, muP and mean-field
parameterizations all improve significantly with per-layer
learning rates. In contrast, NTK actually performs worse
with the prescribed per-layer exponents: we note that these
exponents assume full alignment and return to this result
later in this section.

We next introduce constant multiplicative factors to the per-
layer learning rates and propose a hyperparameter transfer
strategy where we tune these constants at small scale and
reuse them across model sizes. Again using the base model
dim of b = 1024, we now define the learning rate in layer l
as ηl = βn · γl · nb

−cl where γl is this constant factor that
should be determined empirically. We use the same learning
rate within each layer type, so we need to determine γ1 for
the embedding layer, γh for the hidden layers, and γL+1 for
the readout layer. The previous experiments correspond to
setting these constants equal to one by default. We continue
to sweep one dimension at each model size to determine
βn, so we note the choice of (γ1, γh, γL+1) really defines
two ratios as a common factor can be absorbed by βn. We
tune (γ1, γh, γL+1) at the base model dim using a three-
dimensional hyperparameter search described in §C.4 and

reuse the best set of values across all model sizes to give the
eval losses in Figure 3(c). We include the values found for
these estimated optimal constant factors for all optimizers
and parameterizations in §C.4.

Using these optimal constants and the per-layer learning
rate exponents that assume full alignment, we see that all
parameterizations can perform hyperparameter transfer
across width. First, the eval loss improves across all scales
when using the optimal constants instead of the default
constants, indicating successful transfer of these constant
multipliers. For the base model dim b = 1024, tuning these
constants can only improve the performance, but comparing
Figure 3(c) to 3(b) shows that for Adam these constants im-
prove performance substantially for all model sizes across
all parameterizations. If instead, these constants improved
performance only at or near the model sizes where they
were tuned, it would be less practical to include them for
large model training because the three-dimensional sweep
would be prohibitively expensive at large scale. The only
exception is that these constants may not transfer well to
the mean-field parameterization models above 2B parame-
ters: we will show in Section 4.3 that this is likely due to
epsilon underflow and is addressed with our epsilon mit-
igations. These results indicate that our recipe for these
per-layer constant multiplicative factors is both essential
and practical: the performance gains are substantial and the
hyperparameter transfer makes them feasible.

Second, the optimal base learning rate is consistent across
scale in all parameterizations. In Figure 4, we first find the
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Global LR +
default constants

Per-layer LR
(full align) +
default constants

Per-layer LR
(full align) +
optimal constants

Per-layer LR
(no align) +
optimal constants

SGD

STP 3.657 3.510 3.385 3.318
NTK 3.732 3.627 3.313 3.324
muP 4.224 4.184 3.809 4.222
MFP 4.092 4.319 4.092 3.898

Adam

STP 2.625 2.576 2.572 2.575
NTK 2.592 2.615 2.591 2.581
muP 2.727 2.646 2.599 2.590
MFP 2.638 2.630 2.633 2.638

Adam+PS

STP 2.580 2.613 2.675 2.577
NTK 2.570 2.623 2.667 2.566
muP 2.574 2.655 2.606 2.575
MFP 2.624 2.640 2.772 2.623

Table 3. Best eval losses for 26.8B parameter models. For each optimizer × parameterization × setting, we sweep the base learning
rate at each model size and use the eval loss from the best base learning rate. The best setting for each optimizer × parameterization is
bold; the best parameterization + setting for each optimizer is bold and red. For Adam, the best model is standard parameterization +
per-layer “full alignment” + optimal constants, where the embedding LR scales like O(1) and hidden and readout LRs scale like O(1/n).
For Adam+parameter scaling, the best model is NTK per-layer “no alignment” + optimal constants, where all LRs scale like O(1).

optimal learning rate at each model dim n with a sweep of
the base learning rate βn, then fit a power law to the optimal
base learning rate vs model dim. If the base learning rate
were exactly the same at all scales, we would see a power
law exponent of zero. We find exponents for standard, NTK,
and muP of -0.05, -0.02, and -0.06, respectively, where
these exponents close to zero indicate that the base learning
rate is almost perfectly scale-invariant. For mean-field pa-
rameterization there is slight deviation from zero with an
exponent of 0.26. This illustrates hyperparameter transfer
for all parameterizations: when the constant factors are con-
sistent across scale, the scaling prescription has correctly
encapsulated the dependence on the scaling dimension into
the prescribed exponents. We can therefore find the optimal
base learning rate on a smaller model and reuse it on all
model sizes.

Finally, we investigate the impact of the alignment assump-
tions, still using per-layer learning rates and optimal con-
stants. In Figure 3(d), we use the learning rate exponents
from the right side of Table 1 derived from assuming no
alignment rather than full alignment. For NTK, muP and
MFP, we see slight improvements in the eval losses across
model sizes when using the no alignment exponents. On the
surface, this improved performance would indicate that the
no alignment exponents are preferable. However, when we
look at the learning rate sweeps in Figure E1, the power law
exponents fit to the optimal base learning rates for standard,
NTK and muP are in the range of -0.58 to -0.69. Since these
exponents are not close to zero, despite the modest perfor-
mance improvements using the no alignment exponents over
the full alignment exponents, the no alignment exponents
do not appear to capture the learning rate scaling behavior
as well as the full alignment exponents. For mean-field

parameterization, it is less clear what the optimal learning
rate exponents are as both the full alignment and no align-
ment settings have power law exponents slightly above zero.
This indicates that in practice, there may be some nuance in
selecting the alignment assumptions that are optimal for a
particular use case and that there may be multiple interesting
choices of exponents for a given parameterization within
our more general space of parameterizations.

We note these empirical results across alignment assump-
tions could occur due to a mechanism other than the activa-
tion or logit growth with respect to width that is predicted
by alignment in dense layers. For example, prior work notes
training instabilities in Transformers due to attention logit
growth (Dehghani et al., 2023; Zhai et al., 2023) or output
logit divergence (Chowdhery et al., 2023) and that these
instabilities are sensitive to the learning rate (Wortsman
et al., 2023). We may also miss slight undercorrection of the
alignment in our finite size models: if the true alignment is
slightly larger than the learning rate exponents account for,
we could have slow growth of activations or logits with re-
spect to width that does not harm performance in our models
but would eventually induce instability at sufficient width.
However, our largest model with 26.8B parameters has a
model dimension of 16,384 which encompasses the width
of many even larger models. As such, even if additional
training instabilities may occur, we expect these per-layer
learning rate and constant factor prescriptions to be relevant
in practice to width scaling in large Transformers.

While muTransfer (Yang et al., 2022) emphasizes that muP
is the unique parameterization that allows hyperparameter
transfer across width, our results show that all parameteri-
zations can perform hyperparameter transfer across width
when each parameterization uses theoretically motivated
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per-layer learning rate exponents. In addition, our eval loss
results for the full alignment exponents contrast with the
empirical results in Yang et al. (2022) where muP outper-
forms standard parameterization in a 6.7B parameter GPT-3
model (Brown et al., 2020). We note, however, that their
comparison across parameterizations has several elements
that favor muP. First, the muP experiments use per-layer
learning rate scaling while the standard parameterization
experiments use a global learning rate. Second, the muP
results tune a handful of constant factors at small scale and
transfer them to large scale. While the specific constant fac-
tors differ from our setting, this is comparable to using our
optimal constant learning rate factors instead of the default
constant factors. As such, their comparison of muP and stan-
dard parameterization is analogous to comparing muP in
our third experiment (Figure 3(c), green curve) against stan-
dard parameterization in our first experiment (Figure 3(a),
blue curve), which indeed shows a benefit for muP. Instead,
we argue that the fair comparison across parameterizations
would use per-layer learning rates and optimal constants for
both, that is, to consider both parameterizations in our third
experiment Figure 3(c). There, we see that standard parame-
terization outperforms muP and in fact substantially so: the
second largest standard parameterization model with 15.3B
parameters outperforms the largest muP model with 26.8B
parameters despite having 57% as many parameters. We
therefore recommend our full alignment per-layer learning
rate prescription for standard parameterization for Adam
where the embedding layer learning rate scales like O(1)
and the hidden and readout layer learning rates scale like
O(1/n).

4.2.2. SGD AND ADAM + PARAMETER SCALING

We next present the results for the same series of experi-
ments for SGD and Adam + parameter scaling in Figure 5,
where we use (a) global learning rates + default constants,
(b) per-layer learning rates (full alignment) + default con-
stants, (c) per-layer learning rates (full alignment) + optimal
constants, and (d) per-layer learning rates (no alignment)
+ optimal constants. As we might expect, the results for
SGD have significantly worse performance than the other
optimizers, and the eval loss values are quite noisy. The
impact of the different learning rate exponents is difficult
to distinguish from noise for SGD, but there are visible per-
formance improvements when using the optimal constants
over the default constants.

For the per-layer learning rate experiments in the Adafactor
family of optimizers, we use Adam + parameter scaling as
the optimizer. The Adafactor optimizer was proposed in
Shazeer & Stern (2018) and includes three types of changes
to Adam. First, it reduces the memory requirements for the
optimizer state by using a low-rank approximation of the
gradient second moment and eliminating the exponential

moving average on the first moment. Second, it introduces
a parameter scaling term in the update rule. Third, it per-
form update clipping rather than gradient clipping, which
stabilizes the update when the second moment estimate is
out-of-date due to the moving average.

From the perspective of width-scaling, the most important
of these differences is the parameter scaling, which multi-
plies the normalized gradients by the norm of the existing
parameters. To focus our investigation on the impact of this
parameter scaling term, we use Adam + parameter scaling
as the optimizer in this section, so that the parameter scaling
term is the sole change from our implementation of Adam.
Additionally, the low-rank approximation in Adafactor in-
troduces changes in the tensor shapes, which caused issues
out-of-the-box with our implementation of fully sharded
data parallelism (FSDP) (Rajbhandari et al., 2020). The
choice of Adam + parameter scaling avoids these issues. As
a cross-check, in Appendix H we compare Adafactor and
Adam + parameter scaling and show that the performance
differences are small and that overall these two optimizers
occupy the same width-scaling regime.

Overall, we see very good empirical performance from
Adam + parameter scaling. When comparing the best set-
ting for each parameterization across Adam with or without
parameter scaling, the addition of parameter scaling slightly
improves the eval loss for all parameterizations except stan-
dard. In particular, the best performing model across all
parameterizations and optimizers is quite unexpected: it is
Adam + param scaling + NTK + no alignment! This result
further validates that it is critical to consider our more gen-
eral space of parameterizations rather than making specific
alignment assumptions upfront.

For the experiments in Figure 5 across different settings
with global, full alignment per-layer and no alignment per-
layer learning rate exponents, we first note that for Adam +
parameter scaling, the no alignment setting is equivalent to
the global learning rate setting. Concretely, when we com-
pute the maximum stable learning rate in the no alignment
setting in the rightmost column of Table 1, for all param-
eterizations we get O(1) scaling in all layers. This means
the per-layer exponents in the no alignment setting do not
modify the base learning rate, which is equivalent to the
global learning rate setting that does not apply these per-
layer exponents. Conceptually, this illustrates an interesting
theoretical property of parameter scaling: in a sense, it ac-
complishes with the optimizer alone what the width-scaling
theory of parameterization intends when carefully selecting
the learning rates to preserve the scale of the activations and
logits. Recall that the stability constraints ensure that, at ini-
tialization, the parameters contribute to constant activations
and at-most-constant logits. If we neglect for a moment
the contribution of alignment, parameter scaling makes the
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Figure 5. For SGD + momentum (top row) and Adam + parameter scaling (bottom row), eval loss comparisons for all parameterizations
across a sequence of interventions. From left to right columns: (a) global LR exponents + default constants, (b) per-layer LR exponents
assuming full alignment + default constants, (c) per-layer LR exponents assuming full alignment + optimal constants, (d) per-layer LR
exponents assuming no alignment + optimal constants.

updates to each layer exactly the “right” scale by matching
the existing parameter norms, allowing every layer to use
a constant scale learning rate regardless of the parameter-
ization. If we do account for alignment, rather than using
constant learning rates, we reduce the hidden and/or readout
layer learning rates to 1/

√
n to account for the extra

√
n

contribution from alignment. The parameter scaling there-
fore makes all parameterizations behave similarly, which
we see in Figures L1 and L2 where all parameterizations
use similar values for the base learning rate and have similar
scale-dependence of the optimal learning rate under each
set of learning rate exponents.

With this equivalence of the no alignment and global learn-
ing rate settings in mind, we can now compare the no align-
ment and full alignment settings for Adam + parameter
scaling. For three reasons, the no alignment exponents ap-
pear preferable to the full alignment exponents. First, the
eval losses from the no alignment (or global) exponents in
Figure 5(a) and (d) outperform the full alignment exponents
in Figure 5(b) and (c). Moreover, the performance gap in-
creases with scale suggesting the no alignment exponents
are truly superior. Second, the full alignment experiments
have very high learning rate sensitivity: this is seen in the
higher curvature in the eval loss vs learning rate curves in
Appendix L where a small deviation from the optimal learn-
ing rate causes a larger loss in performance. In addition, the
optimal learning rate is quite close to the maximum stable

learning rate, which is a risky scenario for training stability.
In general, high learning rate sensitivity is an undesirable
property: when all else is equal, it is preferable to have a
model that can train well with a larger range of learning
rates than one that requires a very narrow range of learn-
ing rates for success. (Wortsman et al., 2023) Third, the
optimal constant multipliers transfer across scales well for
the no alignment exponents but actually harm performance
compared to the default constants for full alignment. Recall
that the optimal constants should transfer well across scale
when the learning rate scaling is well-encapsulated in the
per-layer learning rate exponents. The positive transfer of
these constants under the no alignment exponents compared
to the negative transfer under the full alignment exponents
indicates that the no alignment exponents better encapsulate
the learning rate scaling into the exponents.

However, despite these reasons to prefer the no alignment
exponents for Adam + parameter scaling, we see an inter-
esting phenomenon when we look at the power law expo-
nents on the optimal learning rate in the full alignment and
no alignment settings. Across all combinations of the pa-
rameterization, default or optimal constants, and full or no
alignment, in Figures L1 and L2 we see similar power law
exponents in the range of −0.29 to 0.05. In particular, both
the full alignment and no alignment settings are close to
scale-invariant, but neither is clearly more scale-invariant
than the other. This contrasts with the Adam setting, where
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the full alignment setting had optimal learning rate power
law exponents close to zero, and the no alignment setting
had power law exponents close to −0.5. In that setting, the
exponent difference of approximately 0.5 corresponded with
the
√
n difference in the prescribed learning rate exponents

between the two alignment settings. This showed that the
full alignment setting was encapsulating the scaling behav-
ior into the prescribed exponents whereas the no alignment
setting required the base learning rate to change across scale
to absorb what wasn’t captured by the prescribed learning
rate exponents. In contrast, for Adam + parameter scaling,
the power law exponents that are slightly less than zero in
both the full alignment and no alignment settings indicate
that parameter scaling may introduce factors that influence
the optimal learning rate scaling that are more complex than
the width-scaling dependence we analyze here.

Although Adafactor has been much less widely adopted
than Adam, it has been used successfully in large model
training (Raffel et al., 2020; Chowdhery et al., 2023; Du
et al., 2022; Fedus et al., 2022; Zoph et al., 2022). How-
ever, several papers have reported difficulties with training
stability and brittleness to the learning rate or other hyper-
parameters (Rae et al., 2021b; Zhai et al., 2021). Both the
empirical success and this brittleness are consistent with
our results. In our experiments with parameter scaling, we
observe eval losses that are similar or better than for Adam,
and in particular the best eval loss across all optimizers and
parameterizations uses Adam + parameter scaling and NTK.
In addition, we note two features that may contribute to the
empirical success of parameter scaling. First, the global
learning rate setting coincides with the theoretically moti-
vated no alignment exponents. Second, the default constants
equal to one are not far from the optimal constants (see §C3),
which range in value from 0.5 to 2.6. This contrasts with
the larger range in the optimal constants for Adam that span
0.15 to 11.7. These two properties may help adaptive opti-
mizers with parameter scaling perform well in the typical
setting in practice that uses global learning rates and no per-
layer learning rate constants. At the same time, we observe
high learning rate sensitivity that may contribute to training
stability difficulties or brittleness to optimizer hyperparame-
ter choices. In particular, in our largest models, the optimal
learning rate is close to the maximum stable learning rate
which may cause issues with training stability.

In conclusion, for adaptive optimizers with parameter scal-
ing, we see similar width-scaling behavior from all param-
eterizations. We recommend using the no alignment, or
equivalently, global learning rate exponents, for improved
performance, and close to scale-invariance in the base learn-
ing rate. Unlike Adam, tuning the per-layer constant mul-
tipliers has minor performance impact and should not be
considered essential. In addition, future work is needed to
more clearly understand the impact of parameter scaling on

the training stability and hyperparameter sensitivity.

4.3. Epsilon Underflow in Adaptive Optimizers

In adaptive optimizers like Adam, the denominator of the
update rule adds a small epsilon parameter to the gradi-
ent second-order moment, originally intended to regular-
ize against division by zero when the gradients are very
small (Duchi et al., 2011; Hinton et al., 2012). More re-
cently, Choi et al. (2019) shows that epsilon is a hyperpa-
rameter that requires tuning. Despite its small value, typ-
ically around 1e-8 (Paszke et al., 2019; Babuschkin et al.,
2020), the epsilon parameter prevents Adam from being
perfectly scale-invariant in that multiplying the gradients by
a constant would not alter the resulting update. In particular,
if the gradient scale drops below the size of epsilon then
epsilon dominates the gradients instead of acting as a neg-
ligible additive constant. Since gradients decrease in scale
with model width as in Table 1, in theory, for any constant
value of epsilon there exists a sufficiently large model that
will encounter this scenario.

Two recent works note this phenomenon and propose possi-
ble mitigations. From an empirical perspective, Wortsman
et al. (2023) observes that gradient norms in standard param-
eterization models decrease with model size and approach
1e-8 for 1.2B parameter models, suggesting this epsilon un-
derflow is relevant in practice. As a mitigation, they propose
using a smaller constant value for epsilon and show that
decreasing epsilon from 1e-8 to 1e-15 improves the loss in
a 4.6B parameter model. From a theoretical perspective,
Yang & Littwin (2023) notes that epsilon should be treated
as part of the parameterization and propose per-layer ep-
silon scaling. For each layer, epsilon is proportional to the
parameterization and layer-specific gradient scale shown in
Table 1. Similar to our per-layer learning rate experiments,
we implement this as

ϵl = base epsilon · (n
b
)−gl

for each layer l, where gl is the negative exponent of the
gradient scale, the base model dim b is 1024, and the base
epsilon is determined empirically. This approach has not
been empirically validated and adds significant implemen-
tation complexity, but should ensure that epsilon and the
gradients scale in tandem across width.

We investigate the practical impact of epsilon across param-
eterizations. As seen in the gradients column of Table 1,
gradients decrease as model width increases with an expo-
nent specific to both the parameterization and layer. As such,
we expect that different parameterizations will encounter
epsilon underflow at different model sizes: in particular, the
steepest exponent is the mean-field parameterization hidden
layer, which scales like 1/n1.5. This suggests that mean-
field parameterization should encounter epsilon underflow
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Figure 6. Epsilon in Adam requires tuning for both constant and per-layer epsilons. (a-b) Learning rate sweep of epsilon constant
factors at model dim D = 4096 for mean field parameterization. Epsilon too small (light blue) = instability at low learning rate, epsilon
too large (dark blue) = suboptimal performance, epsilon just right (medium blue) = optimal performance. (c-d) Heatmaps for epsilon
constant factors for mean field parameterization in six model sizes: color indicates the absolute difference in eval loss from the best
constant value for that setting. Dark blue columns in the middle indicate good performance whereas smaller or larger values have
suboptimal performance.

at smaller model sizes than other parameterizations.

Both constant epsilon and per-layer epsilon require hyper-
parameter tuning, to select the constant or the base constant
multiplier, respectively. As shown in Figure 6 for mean
field parameterization and Figure F1 for all parameteriza-
tions, constant values that are too large lead to suboptimal
performance; values that are too small lead to instability,
presumably by failing to prevent the numerical instability
epsilon was originally intended to prevent. Rather than pro-
viding numerical stability for small number division with
an additive constant in the denominator that breaks scale-
invariance, we propose Adam-atan2: a variant of Adam
that replaces the standard division operation in the update
rule with the standard library function atan2. The function
atan2(x, y) returns arctan(x/y) in the appropriate quad-
rant, which is approximately equal to x/y due to small-angle
approximation when x/y is close to zero and asymptotically
approaches ±π/2 as the argument goes to ±∞. In particu-
lar, the atan2 function is defined even at (0, 0) exactly and
is scale-invariant up to precision limits. The single-line code
change in Appendix C.5 to use arctangent in the Adam up-
date equation eliminates the epsilon hyperparameter entirely
and restores the scale invariance to Adam.

For all parameterizations, we compare the three mitigations
using the best choice of constant in each setting against
a baseline epsilon (1e-9): small constant epsilon (1e-15),
per-layer epsilon scaling (base epsilon = 1e-12), and our
proposal Adam-atan2. In Figure 7(a) and (b), we see that
all three mitigations have modest improvements in the eval
loss for NTK and and substantial improvements for mean-
field parameterization. In addition, the gap in performance
increases with model size. The other two parameterizations
show no performance changes in our model sizes (see Fig-
ure F2) with any of the epsilon mitigations. The particular
sensitivity of mean-field parameterization to epsilon is con-
sistent with our theoretical motivation: due to its hidden

layer gradients scaling like 1/n1.5, we expect that among
the parameterizations, mean-field will encounter epsilon
underflow at the smallest model sizes and benefit most from
these mitigations.

We therefore recommend care when setting epsilon. For
standard parameterization models with up to a billion pa-
rameters, the typical default value of 1e-8 is likely accept-
able but slightly smaller values of 1e-12 or 1e-15 may be
preferable. For larger models or other parameterizations,
using epsilon requires smaller constants or per-layer epsilon
scaling, with tradeoffs between implementation complexity
and, at least theoretically, hyperparameter tuning costs. In
principle, the theoretical prescription for per-layer epsilon
encapsulates the epsilon scaling in the exponents, allowing
hyperparameter transfer of the constant multiplier similar
to other parameterized quantities like learning rates. In con-
trast, the optimal constant epsilon should be scale-dependent
in theory, but we note that with our model sizes and constant
search resolution we did not see scale dependence of the
optimal epsilon constant. However, this epsilon hyperpa-
rameter can be eliminated entirely with Adam-atan2 with a
one-line code change and the same improved performance.

Moreover, epsilon illustrates that finite precision plays an
important role in parameterization in practice. Recall that
standard and NTK parameterizations, and similarly muP
and mean-field parameterizations, are theoretically equiva-
lent under the equivalence relations in Appendix B.2, if we
overlook the contribution of epsilon. However, using default
epsilons in Figure 7(c), we see significant performance gaps
between equivalent parameterizations that are closed when
epsilon underflow is mitigated in Figure 7(d): now the pairs
standard + NTK and muP + mean-field show approximately
equal performance. It is plausible that the more widespread
usage of standard and muP parameterizations over their
equivalents has been influenced by this phenomenon.

16



Scaling Exponents Across Parameterizations and Optimizers

1.1B 1.9B 4B 7B 15B 27B
Parameters

2.55

2.60

2.65

2.70

2.75

2.80

Be
st

 E
va

l L
os

s
Adam+NTK

Default constant eps (1e-9)
Small constant eps (1e-15)
Per-layer eps (base = 1e-12)
Adam-atan2

1.1B 1.9B 4B 7B 15B 27B
Parameters

2.55

2.60

2.65

2.70

2.75

2.80
Adam+Mean Field

Default constant eps (1e-9)
Small constant eps (1e-15)
Per-layer eps (base = 1e-12)
Adam-atan2

1.1B 1.9B 4B 7B 15B 27B
Parameters

2.55

2.60

2.65

2.70

2.75

2.80

Be
st

 E
va

l L
os

s

Before: default epsilon
Standard
NTK
muP
Mean-Field

1.1B 1.9B 4B 7B 15B 27B
Parameters

2.55

2.60

2.65

2.70

2.75

2.80
After: per-layer epsilon

Standard
NTK
muP
Mean-Field

Figure 7. All epsilon mitigations improve performance similarly for NTK and MFP. Epsilon mitigations for Adam using the best
choice of constants in each mitigation setting, showing all three mitigations equally and substantially improve performance in (a) NTK
and (b) Mean Field. (c) Before fixing epsilon, equivalent parameterizations have different performance. (d) After fixing epsilon, shown
here with per-layer epsilon, equivalent parameterizations (STP+NTK, muP+MFP) have approximately equivalent performance.

Lastly, we can now compare the performance across equiva-
lence classes rather than individual parameterizations: we
see that the standard parameterization equivalence class
outperforms the muP equivalence class. This narrows the
possible explanations for the performance differences to the
elements that we saw distinguish the equivalence classes in
Section 3.2: namely, the shift in the readout layer in muP
and mean-field parameterization that initializes the logits to
scale like 1/

√
n appears to harm the empirical performance.

Instead, to obtain the best performance for Adam, we rec-
ommend the parameterizations that initialize the logits to
be constant scale, in particular our prescription for standard
parameterization with per-layer learning rates where the
embedding layer learning rate scales like O(1) and hidden
and readout layer learning rates scale like O(1/n).

5. Related Work
In addition to the prior work in Yang & Hu (2021); Yang
& Littwin (2023) discussed earlier in the paper, the litera-
ture on width-scaling parameterizations (Lee et al., 2017;
Matthews et al., 2018; Jacot et al., 2018) includes the neu-
ral tangent kernel parameterization (Jacot et al., 2018), a
modification to standard parameterization to enable a con-
sistent infinite-width limit (Sohl-Dickstein et al., 2020), and
a mean-field limit (Mei et al., 2018; Geiger et al., 2020;
Rotskoff & Vanden-Eijnden, 2018; Chizat & Bach, 2018;
Araújo et al., 2019) for single-hidden-layer MLPs. Bordelon
& Pehlevan (2022) proposed the mean-field parameteriza-
tion by extending this mean-field limit to deep neural net-
works using self-consistent dynamical field theory. Yaida
(2022) proposed a one-parameter family of hyperparame-
ter scaling strategies that interpolates between the neural
tangent scaling and mean-field or muP scaling. This meta-
parameterized scaling strategy has been used to propose
width-scaling initialization and training hyperparameters in
Transformers (Dinan et al., 2023). Various “unit scaling”
strategies proposed by Shazeer (2020); Kaplan (2019) are

similar to NTK parameterization. In addition, Blake et al.
(2023) also modifies the per-layer gradients to keep the ac-
tivations and parameters close to unit scale regardless of
model size. Throughout this paper, as in Yang & Hu (2021)
and Yang & Littwin (2023), we use the RMS norm to quan-
tify the scale of activations and logits, but other choices of
norm are possible including the spectral norm used in Yang
et al. (2023a) to provide a spectral perspective on muP, and
a modular norm proposed in Large et al. (2024). Ishikawa
& Karakida (2023) extends muP to second-order optimizers
(K-FAC, Shampoo).

Empirical evaluations of muP using Adam in Transformers
were first presented in muTransfer (Yang et al., 2022) on
models up to 6.7B parameters. Cerebras-GPT (Dey et al.,
2023) found that muP with per-layer learning rates aided
hyperparameter transfer and outperformed standard param-
eterization with global learning rates in compute-optimal
models up to 2.7B parameters. In addition, Lingle (2024)
showed that the optimal learning rate transfer across width
for muP held on ablations of many architectural and opti-
mal choices in models up to 1.2B parameters with learning
rate granularity of 4×, but that the optimal learning rate
drifted by a factor of 2× between 40M parameter and 10B
parameter models.

Other important scaling dimensions include depth and batch
size. For depth scaling, Yang et al. (2023b), Bordelon et al.
(2023), and Chizat & Netrapalli (2023) make similar pro-
posals that add a 1/

√
L scaling factor to the residual branch

of a ResNet or Transformer where L is the depth. Batch size
scaling is investigated in (Shallue et al., 2019; McCandlish
et al., 2018; Zhang et al., 2019; Kaplan et al., 2020). It
is common to increase the batch size with model size as
in (Brown et al., 2020; Rae et al., 2021a; Hoffmann et al.,
2022; Chowdhery et al., 2023; Scao et al., 2022; Dey et al.,
2023; Bi et al., 2024) but there are exceptions that use fixed
batch sizes (Thoppilan et al., 2022; Touvron et al., 2023a;b)
across scale.
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6. Limitations
This paper focuses specifically on width scaling, while in
practice there are a number of dimensions that need to scale
in tandem to achieve optimal performance in large models.
In particular, large models typically co-scale at least the
width, depth, batch size, training horizon, weight decay,
and learning rate. For specific pairs or subsets of these
scaling dimensions, such as batch size and learning rate
or the aspect ratio between width and depth, the literature
contains some theoretical insights and empirical validation,
but determining how to optimally co-scale this entire set of
dimensions is a complex and open problem. As we discuss
in Appendix I, co-scaling the width and training horizon as
in the compute-optimal regime requires adjustments to the
learning rate exponents, but developing theory with realistic
implications would require alternate approaches.

In addition, our theory considers the input and output dimen-
sionality, corresponding to the vocabulary size in a Trans-
former language model, to be an O(1) constant with respect
to width. However, our experiments use a vocabulary size
of 32,000 that is typical for our range of model sizes. We do
hold the vocabulary size fixed across our model sizes, but
the magnitude of 32,000 is comparable to model widths that
range up to D = 16,384, and it might be more realistic to
consider the vocabulary size to be O(n) rather than O(1).

7. Conclusions and Future Work
From our broad perspective across parameterizations and
optimizers, we find that key assumptions about alignment
in prior work require additional consideration. Using em-
pirical measurements from our alignment ratio metric, we
find that alignment is a dynamical quantity that depends
significantly on the training step, parameterization and layer,
and less heavily on the optimizer. The alignment measured
during training gives intermediate values that indicate that
alignment assumptions in prior work may be overly conser-
vative, suggesting that a larger set of parameterizations is
more interesting than previously thought.

By considering a more general space of parameterizations
with respect to the alignment, we show that all parameter-
izations benefit from theoretically motivated learning rate
exponent prescriptions. We also demonstrate that several
hyperparameters should be chosen carefully. First, we show
the necessity and practicality of tuning the constant factors
in per-layer learning rate prescriptions. These constants
transfer well across model sizes, showing that all parameter-
izations can perform hyperparameter transfer under the right
theoretical prescription. Second, the epsilon hyperparameter
in adaptive optimizers induces gradient underflow using typ-
ical defaults at realistic model sizes, in particular for mean-
field parameterization. Theoretically, epsilon should be

considered part of the parameterization and scaled per-layer,
but practically, small constant values can perform just as
well when selected carefully. To eliminate epsilon entirely,
we propose making Adam scale-invariant with Adam-atan2.

Future work might consider alignment-aware learning rate
schedules or alignment-aware optimizers. In addition, since
the characterization of parameterizations into feature learn-
ing and kernel limits is specific to the alignment assump-
tions, this characterization could be extended to the general
alignment setting. Beyond width scaling, future work should
investigate the other scaling dimensions that are necessary
for large model training, in particular depth and batch size.
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Appendix
A. Author Contributions

Katie, Lechao, Jaehoon and Jeffrey were the four core project contributors. All core contributors were closely involved
throughout the duration of the project and made contributions to developing the theory, analyzing and debugging experiments,
framing the narrative, reviewing code and giving feedback on writing. Katie led the project and led the theory, implemented
and ran all experiments, produced all figures, and wrote the paper. Lechao made particular contributions to theory. Jaehoon
made particular contributions to experimental design and framing the paper in relation to prior work, including drafting the
related work section. Jeffrey made particular contributions to theory, experiment analysis, and paper framing and provided
the primary advising on the project.

The experiments were implemented on top of a base Transformer model codebase. Peter led the development of this base
model codebase and Roman, Mitchell, Jaehoon, Lechao and Katie made significant contributions to this codebase.

In addition, Mitchell contributed expertise on optimizers and weight decay. Alex contributed expertise on quantifying the
uncertainty in exponent measurements. Roman implemented a small library used for reparameterization and gradient scaling.
Jascha contributed to early discussions on parameterization and gradient scaling, contributed ideas about weight decay,
and gave feedback on writing. Izzeddin contributed to technical discussions on alignment. Leslie contributed to technical
discussions and gave feedback on paper framing and writing.

B. Theoretical Details

In this section, we provide formal definitions and a complete derivation of the constraints for our alignment-general space of
parameterizations.

B.1. MODEL

Following a similar model and notation as Yang & Hu (2021), we consider a multilayer perceptron with L hidden layers,
input and output dimensionality d, hidden layer dimensionality n, and nonlinearity ϕ : R→ R. The weight matrices are
denoted:

• W1 ∈ Rn×d for the embedding layer

• W2, . . .WL ∈ Rn×n for the hidden layers, and

• WL+1 ∈ Rd×n for the readout layer.

The parameterization for each layer l is specified by three values {al, bl, cl}, where:

• the parameter multiplier is n−al ,

• the parameter initialization is Wl ∼ N (0, n−2bl), and

• the learning rate ηl ∝ n−cl with width-independent constant of proportionality that we omit here.

For an input x ∈ Rd, the model has activations z1, . . . zL and outputs logits zL+1:

z1 = ϕ(n−a1W1 · x)
zl = ϕ(n−alWl · zl−1), l ∈ [2, L]

zL+1 = n−aL+1WL+1 · zL

There can be additional values prescribed in a width-scaling parameterization beyond the initialization scale, parameter
multipliers and learning rate. For example, Yang & Littwin (2023) includes the epsilon hyperparameter, gradient clipping
and weight decay in the parameterization for adaptive optimizers like Adam.

B.2. EQUIVALENCE CLASSES

These parameterizations occupy equivalence classes because in any layer we can “factor out” a constant term from
the parameter initialization into the parameter multiplier, which exactly preserves the output of the forward pass while
multiplying the gradients by this constant. This change in the gradients can then be “corrected for” by modifying the learning
rate in an optimizer-specific manner.
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In this one-dimensional symmetry group parameterized by θ, to preserve the forward pass, regardless of the optimizer apply

al ← al + θ

bl ← bl − θ.

Then specific to the optimizer, to preserve the effect of the backwards pass, correct the learning rate according to

SGD: cl ← cl − 2θ

Adam: cl ← cl − θ

Adafactor: cl ← cl.

In particular, under the right learning rates, our four parameterizations occupy two equivalence classes: standard and
NTK are equivalent and muP and mean-field parameterization are equivalent. In this paper, we will consider all four
parameterizations separately, as these equivalences hold only under infinite precision, while neural networks regularly
encounter finite-precision effects. These equivalences were observed for SGD and Adam in Yang & Hu (2021) and Yang &
Littwin (2023) respectively, and we propose this equivalence for Adafactor.

B.3. DEFINING “SCALE”

Throughout this derivation, we are interested in the “scale” of various quantities in the infinite-width limit, specifically the
exponent with respect to width n as the width becomes large.

Definition B.1. We say that the scale of a quantity U is nv if

v = lim
n→∞

logn ∥U∥RMS

where the norm is the root-mean-square (RMS) norm. Intuitively, the RMS norm describes the size of “typical” entries in a
matrix: if all entries were the same then the RMS norm would match the value of each entry.

We use standard Big O notation or the ∼ symbol to denote this asymptotic behavior and write:

U = Θ(nv) or U ∼ nv if v = lim
n→∞

logn ∥U∥RMS

U = O(nv) if v ≥ lim
n→∞

logn ∥U∥RMS

U = Ω(nv) if v ≤ lim
n→∞

logn ∥U∥RMS

B.4. ASSUMPTIONS AND NOTATION

We will assume the following:

• The input data is Θ(1).
• The number of layers L is O(1).
• The number of training steps T is O(1).
• The batch size is one.
• The input and output dimensionality d is O(1).
• The nonlinearity ϕ has bounded (weak) derivative, so the derivative of the nonlinearity does not contribute to the

exponent in the infinite-width limit. As such, we omit the nonlinearity in the following calculations, equivalent to
assuming ϕ is the identity function.

• We assume that the derivative of the loss with respect to the logits ∇zL+1
L is Θ(1). Since the output dimensionality d

is O(1), this assumption holds for many common loss functions.
• Our theoretical derivations use real numbers, i.e. assuming infinite precision, despite possible effects from finite

precision in practice.
• We denote the difference in a quantity after initialization as ∆•t := •t − •0, for example ∆ztl := ztl − z0l .
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• When the timestep is clear from the context, we omit the superscripts.
• Unless otherwise stated, a norm refers to the RMS norm.
• The learning rate ηl is proportional to n−cl with a width-independent proportionality constant that is typically

determined empirically. For our derivations we will omit the proportionality constant and write ηl = n−cl .
• We use ∇Wl

L and ∂L
∂Wl

interchangeably.

B.5. DEFINING STABILITY AND NONTRIVIALITY

We will use the definitions from Yang & Hu (2021) for stability and nontriviality:

Definition B.2. A parameterization is stable if the activations have exactly constant scale, i.e. ztl = Θ(1) ∀l ∈ [1, L] and
the logits are at most constant scale, i.e. zL+1 = O(1), at all timesteps 0 ≤ t ≤ T during training.

Definition B.3. A parameterization is nontrivial if the change in logits after initialization is at least constant scale, i.e.
ztL+1 − z0L+1 = Ω(1) for some timestep 0 ≤ t ≤ T during training.

The specific choice to require exactly constant scale activations and at most constant scale logits should be thought of as a
design choice from which theoretical results follow rather than a theoretical result itself.

B.6. FIRST FORWARD PASS: STABILITY AT INITIALIZATION

The stability constraints at initialization ensure that all intermediate activations zl are Θ(1) and the logits zL+1 are O(1).
The constraints apply iteratively across O(1) layers: since the input x is O(1), the constraint on the first layer ensures that
z1 is O(1), then the constraint on layer l ensures that zl is O(1) assuming the previous layer l − 1 constraint are satisfied so
that zl−1 is O(1).

This gives the constraints for stability at initialization:

a1 + b1 = 0

al + bl = 1/2, l ∈ [2, . . . , L]

aL+1 + bL+1 ≥ 1/2

B.7. GRADIENTS AT INITIALIZATION

At initialization, the gradients for each layer can be calculated using straightforward application of the chain rule. We first
define gtl as the negative exponent of the gradient scale of the loss with respect to the parameters in layer l at timestep t.

Definition B.4. Let gtl = − lim
n→∞

logn

∥∥∥∥ ∂L
∂W t

l

∥∥∥∥ so that ∂L
∂Wl

= Θ(n−gl).

Then by the chain rule, the gradient decomposes as

∂L
∂Wl

=
∂L

∂zL+1

∂zL+1

∂zL
· · · ∂zl+1

∂zl

∂zl
∂Wl

where ∂zL+1

∂zL
= Θ(1) by assumption, ∂zl

∂zl−1
∼ n−al · n−bl and ∂zl

∂Wl
∼ n−al .

After taking the logarithm and flipping the negative signs, this gives

gl = aL+1 + bL+1 +

(
L∑

i=l+1

(ai + bi − 1/2)

)
+ al

If we then assume the stability at initialization constraints, the terms inside the sum for all hidden layers cancel, leaving that
the gradients at initialization are:

gl = al + aL+1 + bL+1 for l ∈ [1, . . . , L]

gL+1 = aL+1
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B.8. OPTIMIZER UPDATE RULES

We write out the version of the update rules that we use for these derivations for each optimizer family, which include
the aspects that are essential to the scaling exponents but omit more specific features like momentum or moving averages,
learning rate schedules, weight decay, clipping, and low-rank factoring. For intuition, it is useful to consider the relationship
between the scale of the updates, gradients, parameters, and learning rate for each optimizer. In SGD, the scale of the
update matches the scale of the learning rate times the scale of the gradients. In Adam, or similar adaptive optimizers that
normalize by the gradient scale, the scale of the updates match the scale of the learning rate regardless of the gradient scale.
In Adafactor, Adam with parameter scaling, or similar optimizers that normalize by the gradient scale and then multiply by
the parameter scale, the scale of the updates matches the scale of the learning rate times the scale of the parameters.

SGD: ∆Wl = ηl · ∇Wl
L

Adam: ∆Wl = ηl ·
∇Wl
L

∥∇Wl
L∥

Adafactor: ∆Wl = ηl · ∥Wl∥ ·
∇Wl
L

∥∇Wl
L∥

B.9. FIRST BACKWARD PASS

Using the update rules in the previous section, we write out the update for each optimizer during the first backward pass. We
note here that so far the calculations and constraints have been the same for all optimizers, and this step is the first one that
is specific to the optimizer based on its update rule.

SGD: ∆Wl = ηl · ∇Wl
L ∼ n−cl · n−gl ,

where gL+1 = aL+1 or gl = al + aL+1 + bL+1,

so ∆Wl ∼ n−aL+1−bL+1−al−cl ,

∆WL+1 ∼ n−aL+1−cL+1

Adam: ∆Wl = ηl ·
∇Wl
L

∥∇Wl
L∥
∼ n−cl · 1

so ∆Wl ∼ n−cl

Adafactor: ∆Wl = ηl · ∥Wl∥ ·
∇Wl
L

∥∇Wl
L∥
∼ n−cl · n−bl · 1

so ∆Wl ∼ n−cl−bl

B.10. DEFINING THE ACTIVATION UPDATE RESIDUAL

We next define a feature learning residual quantity rl that measures how far the parameterization is from the feature learning
regime. For each layer l in [1, L], we define rl as the negative exponent of the scale of ∆zl, where ∆zl the change in
activations following layer l during training. To preserve stability, this change cannot exceed constant scale, so rl, as the
negative exponent, cannot be less than zero. Feature learning, where the change in activations immediately prior to the
readout layer has constant scale, then corresponds to rL = 0 exactly. Conceptually, feature learning occurs if at least one of
the embedding or hidden layers contributes at least one constant scale term to the activations.

Definition B.5. For all l in [1, L], let rl := − lim
n→∞

logn ∥∆zl∥, so that ∆zl ∼ n−rl .
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B.11. DEFINING ALIGNMENT VARIABLES

In this section, we will define three alignment variables αl, ωl and ul that are the exponents of the alignment contributions
from the ∆Wl · zl−1, Wl ·∆zl−1 and ∆Wl ·∆zl−1 terms respectively.

Starting in the second forward pass, each activation for layer l in [2, L+ 1] expands into four terms:

zl = n−al(Wl +∆Wl)(zl−1 +∆zl−1)

= n−al(Wl · zl−1 + ·Wl∆zl−1 +∆Wl · zl−1 +∆Wl ·∆zl−1)

Due to the random initialization, the Wl · zl−1 term has no alignment. For the remaining three terms, we introduce the
following alignment variables.

Definition B.6. We define the alignment variables as

αl = lim
n→∞

logn
∥∆Wlzl−1∥
∥∆Wl∥∥zl−1∥

so that ∆Wlzl−1 ∼ nαl∥∆Wl∥∥zl−1∥,

ωl = lim
n→∞

logn
∥Wl∆zl−1∥
∥Wl∥∥∆zl−1∥

so that Wl∆zl−1 ∼ nωl∥Wl∥∥∆zl−1∥,

ul = lim
n→∞

logn
∥∆Wl∆zl−1∥
∥∆Wl∥∥∆zl−1∥

so that ∆Wl∆zl−1 ∼ nul∥∆Wl∥∥∆zl−1∥.

We have omitted the timestep superscripts above, but alignment is a dynamic quantity so more formally we have

αt
l := lim

n→∞
logn

∥∥∆W t
l z

t
l−1

∥∥
∥∆W t

l ∥
∥∥ztl−1

∥∥
and similarly for ωt

l and ut
l .

Note that for many quantities in our notation, we define the variable to be a negative exponent, but for these alignment
variables we are defining αl, ωl, ul as positive exponents so they take on values between 0 and 1.

B.12. SECOND FORWARD PASS: STABILITY DURING TRAINING

To derive stability constraints for the second forward pass that ensure all intermediate activations are exactly constant scale
and the logits are at most constant scale, we will proceed starting from the embedding layer l, followed by the hidden layers
l in [2, L] and finally the readout layer L + 1. These constraints work iteratively across layers: the first constraints will
ensure z1 = Θ(1), and then the subsequent constraints will ensure zl = Θ(1) assuming that zl−1 = Θ(1), and finally the
readout constraints will ensure that zL+1 = O(1) assuming zL = Θ(1).

In the second forward pass, the embedding layer activations are

z11 = n−a1(W 0
1 +∆W 1

1 )x

= n−a1W 0
1 x+ n−a1∆W 1

1 x

= z01 + n−a1∆W 1
1 x.

Recall that the input x is O(1) and that the input dimensionality d that is the interior dimension in the W1 · x term is O(1).
Since z01 = Θ(1) by the stability at initialization constraints, we have ∆z11 = n−a1∆W 1

1 x = O(1) ⇐⇒ z11 = Θ(1). Then
by plugging in ∆W 1

1 for each optimizer from §B.9, we have
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SGD Adam Adafactor

∆W 1
1 ∼ n−aL+1−bL+1−al−cl n−c1 n−b1−c1

∆z11 = n−a1∆W 1
1 x ∼ n−aL+1−bL+1−2a1−c1 n−a1−c1 n−a1−b1−c1

∆z11 = O(1)⇔ aL+1+bL+1+2a1+c1 ≥ 0 a1 + c1 ≥ 0 c1 ≥ 0 since a1 + b1 = 0

Next, for the hidden layer activations we have

z1l = n−alW 1
l z

1
l−1 = n−al(W 0

l +∆W 1
l )(z

0
l−1 +∆z1l−1)

= n−alW 0
l z

0
l−1 + n−alW 0

l ∆z1l−1 + n−al∆W 1
l z

0
l−1 + n−al∆W 1

l ∆z1l−1

where z0l = Θ(1) by the stability at initialization constraints and we assume that z1l−1 = Θ(1) by these constraints on the
previous layer. This gives us four terms to bound, and in the table below we write one row for each term and in the columns
we write the constraints needed to bound that term for the relevant optimizer.

SGD Adam Adafactor

n−alW 0
l z

0
l−1 al + bl − 1/2 = 0 by stability at init so no constraint required

n−alW 0
l ∆z1l−1 1/2 + rl−1 − ωl ≥ 0

n−al∆W 1
l z

0
l−1 aL+1 + bL+1 + 2al + cl − αl ≥ 0 al + cl − αl ≥ 0 1/2 + cl − αl ≥ 0

n−al∆W 1
l ∆z1l−1 aL+1 + bL+1 + 2al + cl + rl−1 − ul ≥ 0 al + cl + rl−1 − ul ≥ 0 1/2 + cl + rl−1 − ul ≥ 0

Finally, for the logits we have

z1L+1 = n−aL+1W 1
L+1z

1
L = n−aL+1(W 0

L+1 +∆W 1
L+1)(z

0
L +∆z1L)

= n−aL+1W 0
L+1z

0
L + n−aL+1W 0

L+1∆z1L + n−aL+1∆W 1
L+1z

0
L + n−aL+1∆W 1

L+1∆z1L

where z0L = Θ(1) by stability at initialization and z1L = Θ(1) by the constraints on the hidden layers, and we want to find
the constraints so that z1L+1 = O(1).

Similar to the hidden activations, we have four terms to bound and show the constraints for each term and optimizer in the
following table:

SGD Adam Adafactor

n−aL+1W 0
L+1z

0
L aL+1 + bL+1 − 1/2 ≥ 0 by stability at init so no constraint required

n−aL+1W 0
L+1∆z1L aL+1 + bL+1 + rL − ωL+1 ≥ 0

n−aL+1∆W 1
L+1z

0
L 2aL+1 + cL+1 − αL+1 ≥ 0 aL+1 + cL+1 − αL+1 ≥ 0 aL+1 + bL+1 + cL+1 − αL+1 ≥ 0

n−aL+1∆W 1
L+1∆z1L 2aL+1 + cL+1 + rL − uL+1 ≥ 0 aL+1 + cL+1 + rL − uL+1 ≥ 0 aL+1 + bL+1 + cL+1 + rL − uL+1 ≥ 0

B.13. THIRD AND SUBSEQUENT FORWARD PASSES: STABILITY DURING TRAINING

For the third and subsequent forward passes, there are slight modifications required to the stability constraints from the
second forward pass. Since we require the activations to be exactly constant scale at initialization, the parameter updates
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for the embedding and hidden layers are never larger in scale than the initial parameters and therefore never dominate the
contribution from the initial parameters to the activations following that layer. However, the readout parameters might have
updates that are larger in scale than the initialization, so we need to calculate the scale of the readout parameters after the
first update and then consider how this changes the constraints on each optimizer.

For SGD, after the first update we have W 1
L+1 = W 0

L+1 + ∆W 1
L+1 ∼ max(−bL+1,−aL+1 − cL+1). This changes the

gradients for all layers before the readout layer, which were g0l = aL+1 + bL+1 + al, and are now g1l = max(aL+1 +
bL+1, 2aL+1 + cL+1) + al. We account for this by replacing the constraints

g01 + a1 + c1 = aL+1 + bL+1 + 2a1 + c1 ≥ 0

g0l + al + cl − αl = aL+1 + bL+1 + 2al + cl − αl ≥ 0

g0l + al + cl + rl−1 − ul = aL+1 + bL+1 + 2al + cl + rl−1 − ul ≥ 0

with 
g11 + a1 + c1 = max(aL+1 + bL+1, 2aL+1 + cL+1) + 2a1 + c1 ≥ 0

g1l + al + cl − αl = max(aL+1 + bL+1, 2aL+1 + cL+1) + 2al + cl − αl ≥ 0

g1l + al + cl + rl−1 − ul = max(aL+1 + bL+1, 2aL+1 + cL+1) + 2al + cl + rl−1 − ul ≥ 0

For Adam, even if the readout parameters do increase in scale after initialization, leading to increased gradient scales, the
Adam update scale does not depend on the gradient scale so the existing constraints are sufficient.

For Adafactor, similar to Adam we do not require an additional constraint as a result of a change in gradient scales, but there
is one additional constraint required due to the parameter scaling: we require cl ≥ 0 to avoid exponential growth as n−cl·t

across steps t.

Finally, by induction over the steps, combining all the above constraints ensures stability for any time t ≤ T . Note that it is
essential that we assumed the number of training steps T is O(1) so that this induction step does not introduce any width
dependence.

B.14. NONTRIVIALITY

Recall that a parameterization is nontrivial if the change in logits after initialization is at least constant scale. This corresponds
to exact equality on one of the stability constraints on the logits, specifically

SGD Adam Adafactor

aL+1 + bL+1 + rL − ωL+1 = 0 aL+1 + bL+1 + rL − ωL+1 = 0 aL+1 + bL+1 + rL − ωL+1 = 0

or or or

2aL+1 + cL+1 − αL+1 = 0 aL+1 + cL+1 − αL+1 = 0 aL+1 + bL+1 + cL+1 − αL+1 = 0

or or or

2aL+1 + cL+1 + rL − uL+1 = 0 aL+1 + cL+1 + rL − uL+1 = 0 aL+1+bL+1+cL+1+rL−uL+1 = 0

B.15. SUMMARY OF CONSTRAINTS

In Table 2, we summarize the full set of stability and nontriviality constraints derived in the previous sections, which define
the alignment-general space of parameterizations.
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SGD Adam Adafactor
St
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ty
at
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n a1 + b1 = 0

al + bl = 1/2 for l ∈ [2, L]

aL+1 + bL+1 ≥ 1/2

St
ab

le
ac

tiv
at

io
ns

du
ri

ng
tr

ai
ni

ng

r1 := g1 + a1 + c1 ≥ 0 r1 := a1 + c1 ≥ 0 r1 := c1 ≥ 0

rl := min


gl + al + cl − αl

gl + al + cl + rl−1 − ul

1/2 + rl−1 − ωl

≥ 0 rl := min


al + cl − αl

al + cl + rl−1 − ul

1/2 + rl−1 − ωl

≥ 0 rl := min


1/2 + cl − αl

1/2 + cl + rl−1 − ul

1/2 + rl−1 − ωl

≥ 0

where gi := cl ≥ 0

max(aL+1 + bL+1, 2aL+1 + cL+1) + ai

St
ab

le
lo

gi
ts

du
ri

ng
tr

ai
ni

ng

min


aL+1 + bL+1 + rL − ωL+1

2aL+1 + cL+1 − αL+1

2aL+1 + cL+1 + rL − uL+1

≥ 0 min


aL+1 + bL+1 + rL − ωL+1

aL+1 + cL+1 − αL+1

aL+1 + cL+1 + rL − uL+1

≥ 0 min


aL+1 + bL+1 + rL − ωL+1

aL+1 + bL+1 + cL+1 − αL+1

aL+1 + bL+1 + cL+1 + rL − uL+1

≥ 0

cL+1 ≥ 0

N
on

tr
iv

ia
lit

y aL+1 + bL+1 + rL − ωL+1 = 0 aL+1 + bL+1 + rL − ωL+1 = 0 aL+1 + bL+1 + rL − ωL+1 = 0

or 2aL+1 + cL+1 − αL+1 = 0 or aL+1 + cL+1 − αL+1 = 0 or aL+1 + bL+1 + cL+1 − αL+1 = 0

or 2aL+1 + cL+1 + rL − uL+1 = 0 or aL+1 + cL+1 + rL − uL+1 = 0 or aL+1 + bL+1 + cL+1 + rL − uL+1 = 0

Table B1. Summary of stability and nontriviality constraints for our alignment-general space of parameterizations.

B.16. TENSOR PROGRAMS AS A SPECIAL CASE

When we assume αl = 1 ∀l ∈ [2, L + 1], ωl = 1/2 for l ∈ [2, L], and ωL+1 = 1, by plugging these values into our
constraints we recover exactly the stability and nontriviality constraints in Yang & Hu (2021); Yang & Littwin (2023). These
assumptions are the necessary and sufficient conditions to recover their constraints exactly. In particular, their constraints
imply no assumption on ul as their αl = 1 is maximal so αl ≥ ul in all cases and the ∆zl−1∆Wl term never dominates the
zl−1∆Wl term.

B.17. MAXIMUM STABLE LEARNING RATES FOR ALL PARAMETERIZATIONS

In Table 1 (repeated here), we compute the maximum stable per-layer learning rate exponents under two specific alignment
assumptions: “full alignment” where αl = ul = 1, and “no alignment” where αl = ul = 1/2, l ∈ [2, L+ 1]. In both of
these settings, we assume ωl = 1/2, l ∈ [2, L + 1]. This ωL+1 term is the alignment exponent on the ∆zLWL+1 term,
which quantifies the alignment between parameter updates in earlier layers that contribute to ∆zL and the initialization in
the readout layer WL+1. Our ωL+1 = 1/2 relaxes the ωL+1 = 1 assumption in Yang & Hu (2021); Yang & Littwin (2023).

The maximal learning rate exponents follow by first plugging in the values for αl, ωl, and ul and then solving for the
minimal value of cl (where minimal cl corresponds to the maximal learning rate, as cl is the negative exponent) that satisfies
the stability constraints in each layer l. Due to the relaxation with ωL+1 = 1/2, for all parameterizations and optimizers in
both our alignment settings, this results in values of cl that make rl = 0 for all l ∈ [2, L+ 1], indicating that all layers are
being updated maximally and that the parameterization is in a feature learning limit.

For standard and NTK parameterizations, our full alignment per-layer learning rate prescriptions differ from prior work, and
can attain feature learning. For muP and MFP, our full alignment per-layer learning rates coincide exactly for SGD and
Adam in Yang & Hu (2021) and Yang & Littwin (2023) respectively as the ωL+1 term does not constrain the learning rates
in the embedding and hidden layers in those parameterizations.

We note here that throughout the paper, we consider from a theoretical perspective what the maximum stable learning rate
exponents should be, but empirically we are interested in the optimal learning rate. It is not necessarily the case that the
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Table 1 (repeated). Left: Parameterizations and gradients at initialization for width n. Middle: Max stable per-layer learning rate scaling
for each optimizer assuming αl = 1, ωl = 1/2 for all layers l. Right: Max stable learning rates assuming αl = ωl = ul = 1/2 for all
layers.

Initialization
Variance

Parameter
Multiplier

Gradient SGD LR,
Full Align

Adam LR,
Full Align

Adafactor LR,
Full Align

SGD LR,
No Align

Adam LR,
No Align

Adafactor LR,
No Align

Standard
Embedding 1 1 1/

√
n

√
n 1 1

√
n 1 1

Hidden 1/n 1 1/
√
n 1/

√
n 1/n 1/

√
n 1 1/

√
n 1

Readout 1/n 1 1 1/n 1/n 1/
√
n 1/

√
n 1/

√
n 1

NTK
Embedding 1 1 1/

√
n

√
n 1 1

√
n 1 1

Hidden 1 1/
√
n 1/n

√
n 1/

√
n 1/

√
n n 1 1

Readout 1 1/
√
n 1/

√
n 1 1/

√
n 1/

√
n

√
n 1 1

muP
Embedding 1/n

√
n 1/

√
n 1 1/

√
n 1 1 1/

√
n 1

Hidden 1/n 1 1/n 1 1/n 1/
√
n

√
n 1/

√
n 1

Readout 1/n 1/
√
n 1/

√
n 1 1/

√
n 1 1 1 1

MFP
Embedding 1 1 1/n n 1 1 n 1 1
Hidden 1 1/

√
n 1/n1.5 n 1/

√
n 1/

√
n n1.5 1 1

Readout 1 1/n 1/n n 1 1 n
√
n 1

maximum stable learning rate and optimal learning rate scale with the same exponents, and future work could more carefully
investigate the relationship between these two entities.
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C. Experimental Details

C.1. ARCHITECTURE AND TRAINING DETAILS

All experiments use the NanoDO (Liu et al., 2024) decoder-only Transformer architecture employing learned positional
embeddings, pre-layer norm (Xiong et al., 2020), and GeLU nonlinearity (Hendrycks & Gimpel, 2016) with no tying of the
embedding and readout parameters. We do not use bias terms for weight parameters or Layernorm, following Chowdhery
et al. (2023). Layernorm has a learnable scale parameter. We do not use dropout. All experiments are implemented in
Flax (Heek et al., 2023) on top of JAX (Bradbury et al., 2018) and use Optax optimizers (Babuschkin et al., 2020). For all
optimizers except Adafactor, we use ZeRO3 (Rajbhandari et al., 2020) fully-sharded data parallelism (FSDP). Our FSDP
implementation did not work with Adafactor out-of-the-box due to tensor shape mismatches as a result of the factored
matrices in Adafactor so we omit it for that optimizer.

All models are trained on the C4 dataset (Raffel et al., 2020) encoded with the T5 SentencePiece (Kudo & Richardson,
2018) tokenizer, with an additional beginning-of-sequence (BOS) token, resulting in the vocabulary size of V = 32, 001
(32, 000 original vocabulary + 1 BOS).4 Training inputs are sequence-packed, while evaluation inputs are padded.

We use a fixed batch size 256, context length 512 and depth L = 8 for all experiments. The different model sizes considered
are listed in Table C1. Specifically, we fix the head dimension h = 128 and co-scale the model dimension D, number of
heads H and MLP dimension F such that D = H × h and F = 4×D in all models. The resulting number of parameters is
approximately L× 12D2 + 2V D, with exact parameter counts reported in Table C1. The compute optimal experiments
include models up to H = 32 or H = 48, and the fixed (50,000) step experiments include models up to H = 128.

For each model size, we sweep the learning rate in increments of 20.25 or 20.5, with the largest stable learning rate determined
by a heuristic: if the learning rate exceeds the optimal learning rate and the eval loss exceeds the minimum eval loss by more
than 20% or causes NaNs, we consider the learning rate unstable. We ensured that our learning rate sweeps covered this
stability threshold so that the gap between the largest plotted learning rate and smallest unstable learning rate is at most 20.5

and in many cases is 20.25. The learning rate sweep plots show only the stable learning rates so learning rates larger than the
rightmost point in each plot can therefore be considered unstable.

Table C1. Model sizes used in experiments.

Number of heads Model dimension MLP width Parameter Counts
H D = 128H F = 4D Embedding Non-embedding Total

1 128 512 4, 108, 928 5, 749, 504 9, 858, 432
2 256 1, 024 8, 217, 856 14, 644, 736 22, 862, 592
4 512 2, 048 16, 435, 712 41, 872, 384 58, 308, 096
6 768 3, 072 24, 653, 568 81, 682, 944 106, 336, 512
8 1, 024 4, 096 32, 871, 424 134, 076, 416 166, 947, 840
12 1, 536 6, 144 49, 307, 136 276, 612, 096 325, 919, 232
16 2, 048 8, 192 65, 742, 848 469, 479, 424 535, 222, 272
20 2, 560 10, 240 82, 178, 560 712, 678, 400 794, 856, 960
24 3, 072 12, 288 98, 614, 272 1, 006, 209, 024 1, 104, 823, 296
32 4, 096 16, 384 131, 485, 696 1, 744, 265, 216 1, 875, 750, 912
48 6, 144 24, 576 197, 228, 544 3, 824, 357, 376 4, 021, 585, 920
64 8, 192 32, 768 262, 971, 392 6, 709, 755, 904 6, 972, 727, 296
96 12, 288 49, 152 394, 457, 088 14, 896, 472, 064 15, 290, 929, 152
128 16, 384 65, 536 525, 942, 784 26, 304, 413, 696 26, 830, 356, 480

C.2. PARAMETERIZATION DETAILS

This section includes details about the parameterization implementations for our Transformer model. For the purpose of
parameterization, the embedding layers include the embeddings, positional embeddings and the Layernorm scale parameter,
the hidden layers include the MLP layers in the Transformer block, the dense query, key and value layers, and the attention
output projection layer, and the readout layer is just the readout layer.

4Effective vocabulary dimension in experiments is 32, 101 due to 100 unused tokens.
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We use the variant of muP originally proposed by Yang & Hu (2021), which is also presented in Table 9 of Yang et al.
(2022).

When the embedding initialization is a constant (i.e. has zero as the exponent), we use 0.01 for the embedding and positional
embedding initialization standard deviation. We otherwise omit constant factors from parameterized quantities unless
otherwise specified.

The attention operator contains a tensor contraction between the query and key matrices, which induces another question
about alignment: if we assume alignment between the query and key, then we should normalize by the head dimension h
and if we do not assume alignment then we should normalize by

√
h inside the softmax. We follow convention and use√

h for standard and NTK parameterizations and h for muP and mean-field. However, we note that due to our fixed head
dimension that this difference amounts to only a constant factor.

C.3. OPTIMIZER DETAILS

We list the default optimizer hyperparameters for each optimizer in Table C2. We use these hyperparameters unless otherwise
stated, for example in the epsilon experiments. Note that Adam + parameter scaling differs from Adam only by the parameter
scaling. Adafactor uses the default optimizer hyperparameter values from the Optax implementation (Babuschkin et al.,
2020).

We do not use weight decay except for in the weight decay experiments in Figure G2 which use decoupled (independent)
weight decay of 1e-4. The learning rate schedule for all experiments uses linear warmup of 1,000 steps followed by a cosine
decay schedule with initial and final learning rates of 0.0.

Table C2. Default optimizer hyperparameters used in all experiments unless otherwise stated.

Hyperparameter SGD Adam Adam + PS Adafactor

Momentum / Beta1 (first moment exponential decay) 0.9 0.9 0.9 1.0
Beta2 (second moment exponential decay) 0.98 0.98 0.8
Epsilon 1e-9 1e-9 1e-30
Parameter Scaling False True True
Factored Gradient RMS False False True
Update Clipping (by block RMS) None None 1.0
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C.4. HYPERPARAMETER TUNING FOR CONSTANT PER-LAYER LEARNING RATE FACTORS

When tuning the per-layer constant multiplicative factors defined in Section 4.2, we use a Bayesian optimization li-
brary (Golovin et al., 2017) to perform a three-dimensional hyperparameter search for (γ1, γh, γL+1) at the base model dim
b = 1024. Recall that we define the learning rate in layer l as ηl = βn · γl · nb

−cl and sweep one dimension at all model
sizes to determine βn, so these values of (γ1, γh, γL+1) define two ratios where any common factor can be absorbed by βn.

For each optimizer × parameterization, we run 800 trials with at most 100 trials in parallel with a range set to [1e− 2, 1e2]
for each constant. If the optimal value for any of the constants is at or near the edge of the range after this first search, we
extend the range of the sweep for that constant to 0.01 and 100x the optimal value found in the original sweep and repeat the
same tuning procedure.

Since the eval loss has some noise, we consider all trials that perform within 0.1% relative eval loss of the best trial to be
equivalently good, and determine the optimal constants using the average for each constant over this set of best trials.

Table C3. Optimal per-layer learning rate multipliers found via three-dimensional hyperparameter search with Bayesian optimization for
each optimizer and parameterization at the base model dim b = 1024.

Optimizer Parameterization Embedding Hidden Readout

SGD

STP 10.426 5.404 0.092
NTK 0.034 53.176 0.232
muP 1398.861 5.532 0.020
MFP 1.325 6.506 0.504

Adam

STP 5.357 1.133 2.596
NTK 0.144 0.886 2.095
muP 5.303 1.258 11.723
MFP 0.351 0.939 2.814

Adam+PS

STP 2.598 1.845 0.838
NTK 1.224 0.881 0.591
muP 0.503 0.794 0.914
MFP 2.339 1.060 0.516

Adafactor

STP 0.918 1.048 0.703
NTK 0.837 0.955 0.765
muP 0.784 1.170 0.668
MFP 1.879 0.928 0.646
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C.5. ADAM-ATAN2 CODE CHANGE

To implement Adam-atan2 using the jax numpy package, imported here as jnp, we change a single line of code to replace
the default Adam update rule:

lambda m, v: m / (jnp.sqrt(v + eps_root) + eps)

with the Adam-atan2 update rule:

lambda m, v: a * jnp.arctan2(m, b * jnp.sqrt(v))

where a and b are constants. We use a = b = 1 for all experiments, but other values might be considered in future work as
discussed below.

The atan2(x, y) function is a standard library function that is typically a thin wrapper (Numpy) around the arctangent
function that determines the appropriate quadrant, handles zero / NaN / infinity values, and otherwise returns arctan(x/y).
Recall the small-angle approximation tan θ ≈ θ that applies for the inverse function arctan θ ≈ θ as well. Therefore, for
values of x/y close to zero, atan2(x, y) = arctan(x/y) ≈ x/y which approximates the usual division operation in Adam.

For values away from zero, the arctangent function smoothly approaches ±π/2 as the argument goes to ±∞. In particular,
when the second-order moment estimate is out-of-date due to slow decay of the moving average, we may have m >

√
v

resulting in an argument with large magnitude that would be smoothly clipped by the arctangent function. This likely results
in an effect similar to the update clipping used in Adafactor (Shazeer & Stern, 2018). However, unlike an additive constant
epsilon, atan2 is scale-invariant up to precision limits in that Adam-atan2(λg) = atan2(λm, λ

√
v) = atan2(m,

√
v) =

Adam-atan2(g) whereas Adam(λg) = λm
λ
√
v+ϵ
̸= m√

v+ϵ
= Adam(g) where g represents the gradients and λ is a constant.

10 5 5 10

-2

2
/2

/2

x

arctan(x)

Figure C1. Arctangent function

b a, if m≪
√
v a, if m ∼

√
v

1 1 1/ arctan(1) = 1.27

2 2 1/ arctan
(
1
2

)
= 2.16

4 4 1/ arctan
(
1
4

)
= 4.08

8 8 1/ arctan
(
1
8

)
= 8.04

16 16 1/ arctan
(

1
16

)
= 16.02

32 32 1/ arctan
(

1
32

)
= 32.01

Table C4. Constants a and b for scaling arctangent.

Regarding the constant values a and b, using a value of b > 1 rescales the argument to be closer to zero which extends the
region where arctangent acts as a small-angle approximation. For a given b, the choice of a controls the approximation
when the argument is far from zero. We note, however, that changing the value of a simply rescales the effective learning
rate and would be absorbed into a sweep of the base learning rate.

Depending on the relationship between m and v, we derive different values of a that would preserve the effective learning
rate for Adam for a particular value of b. Recall that m and v are the first- and second-order moment estimates of the
gradient, so when the moving average is up-to-date then ∥m∥ ≤ ∥

√
v∥ and the arctangent argument will be in the range

[−1/b, 1/b]. If m <<
√
v, to give an accurate small-angle approximation, we want a = b so that the first term in the

Taylor series a · arctan(x, b · y) = a
byx + . . . matches the usual division operator that is linear in x with coefficient

1/y. If m ∼
√
v, to give an accurate approximation when m/

√
v approaches ±1, we want a = 1

arctan(1/b) so that
a · arctan(m, b ·

√
v) = a · arctan(1/b) = 1. For b = 1, this corresponds to a = 4/π ≈ 1.27. It is therefore possible that

our choice of a = 1 when b = 1 may induce a change of up to this ≈ 1.27 factor in the effective learning rate, but this
change would be absorbed into our learning rate sweeps. We note in Table C4 that as b becomes larger, the values from a
converge between these two regimes.
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D. Additional Alignment Experiments

SGD+Momentum Alignment Experiments
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Figure D1. The log alignment ratio measured in all dense layers across training steps for SGD using a global learning rate at approximately
the optimal learning rate for each setting. Top = 167M parameter model (D = 1024), middle = 535M parameter model (D = 2048),
bottom = 1.9B parameter model (D = 4096). Note the log scale on the x-axis.
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Adam Alignment Experiments
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Figure D2. The log alignment ratio measured in all dense layers across training steps for Adam using a global learning rate at approximately
the optimal learning rate for each setting. Top = 167M parameter model (D = 1024), middle = 535M parameter model (D = 2048),
bottom = 1.9B parameter model (D = 4096). Note the log scale on the x-axis.
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Adafactor Alignment Experiments

101 102 103 1040.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Al
ig

nm
en

t

Standard, D=1024, LR=2^-5.5

101 102 103 1040.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0 NTK, D=1024, LR=2^-5.5

101 102 103 1040.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0 muP, D=1024, LR=2^-5.5

101 102 103 1040.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0Mean Field, D=1024, LR=2^-5.75

101 102 103 104

Steps
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Al
ig

nm
en

t

101 102 103 104

Steps
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

101 102 103 104

Steps
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

101 102 103 104

Steps
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

101 102 103 1040.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Al
ig

nm
en

t

Standard, D=2048, LR=2^-5.75

101 102 103 1040.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0 NTK, D=2048, LR=2^-5.5

101 102 103 1040.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0 muP, D=2048, LR=2^-5.75

101 102 103 1040.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0Mean Field, D=2048, LR=2^-5.25

101 102 103 104

Steps
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Al
ig

nm
en

t

101 102 103 104

Steps
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

101 102 103 104

Steps
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

101 102 103 104

Steps
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

101 102 103 1040.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Al
ig

nm
en

t

Standard, D=4096, LR=2^-6.0

101 102 103 1040.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0 NTK, D=4096, LR=2^-5.75

101 102 103 1040.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0 muP, D=4096, LR=2^-5.75

101 102 103 1040.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0Mean Field, D=4096, LR=2^-5.75

101 102 103 104

Steps
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Al
ig

nm
en

t

101 102 103 104

Steps
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

101 102 103 104

Steps
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

101 102 103 104

Steps
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

B0/mlp_0
B0/mlp_1
B0/query
B0/key
B0/value
B0/attn_out
readout

B1/mlp_0
B1/mlp_1
B1/query
B1/key
B1/value
B1/attn_out
end of warmup

B2/mlp_0
B2/mlp_1
B2/query
B2/key
B2/value
B2/attn_out

B3/mlp_0
B3/mlp_1
B3/query
B3/key
B3/value
B3/attn_out

B4/mlp_0
B4/mlp_1
B4/query
B4/key
B4/value
B4/attn_out

B5/mlp_0
B5/mlp_1
B5/query
B5/key
B5/value
B5/attn_out

B6/mlp_0
B6/mlp_1
B6/query
B6/key
B6/value
B6/attn_out

B7/mlp_0
B7/mlp_1
B7/query
B7/key
B7/value
B7/attn_out

Figure D3. The log alignment ratio measured in all dense layers across training steps for Adafactor using a global learning rate at
approximately the optimal learning rate for each setting. Top = 167M parameter model (D = 1024), middle = 535M parameter model
(D = 2048), bottom = 1.9B parameter model (D = 4096). Note the log scale on the x-axis.
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E. Additional Per-Layer Learning Rate Experiment Results

This section includes additional results for the per-layer learning rate experiments in Section 4.2. In Figure E1, we show the
difference in the scale-dependence of the optimal learning rate for the full alignment vs no alignment settings for Adam.
In Table E1 we report the eval losses for the six largest model sizes in all settings including per-layer epsilon settings. In
Figure E2, we show eval loss vs model size scaling curves for all optimizers for all settings that use optimal per-layer
learning rate constant multipliers. In Figure E3, we include eval loss vs model size scaling curves for an ablation of global vs
per-layer learning rates and default vs optimal constants. Learning rate sweeps for all settings are included in §J, §K and §L.

2 15 2 13 2 11 2 9 2 7

Base Learning Rate

2.6

2.8

3.0

3.2

3.4

Ev
al

 L
os

s

Adam + Standard
+ Per-layer LR (full align)

+ optimal constants
D=128
D=256
D=512
D=768
D=1024
D=1536
D=2048
D=2560
D=3072
D=4096
D=6144
D=8192
D=12288
D=16384

2 9 2 7 2 5 2 3 2 1

Base Learning Rate

2.6

2.8

3.0

3.2

3.4

Adam + NTK
+ Per-layer LR (full align)

+ optimal constants

2 13 2 11 2 9 2 7 2 5

Base Learning Rate

2.6

2.8

3.0

3.2

3.4

Adam + muP
+ Per-layer LR (full align)

+ optimal constants

2 9 2 7 2 5 2 3 2 1

Base Learning Rate

2.6

2.8

3.0

3.2

3.4

Adam + Mean Field
+ Per-layer LR (full align)

+ optimal constants

28 210 212 214

Model Dim (D)
2 15

2 13

2 11

2 9

2 7

Op
tim

al
 L

R LR = 2.43e-03 * (D ** -0.05)

28 210 212 214

Model Dim (D)
2 9

2 7

2 5

2 3

2 1

LR = 9.51e-02 * (D ** -0.03)

28 210 212 214

Model Dim (D)
2 13

2 11

2 9

2 7

2 5

LR = 4.74e-03 * (D ** -0.06)

28 210 212 214

Model Dim (D)
2 9

2 7

2 5

2 3

2 1

LR = 1.10e-02 * (D ** 0.27)

2 15 2 13 2 11 2 9 2 7

Base Learning Rate

2.6

2.8

3.0

3.2

3.4

Ev
al

 L
os

s

Adam + Standard
+ Per-layer LR (no align)

+ optimal constants
D=128
D=256
D=512
D=768
D=1024
D=1536
D=2048
D=2560
D=3072
D=4096
D=6144
D=8192
D=12288
D=16384

2 9 2 7 2 5 2 3 2 1

Base Learning Rate

2.6

2.8

3.0

3.2

3.4

Adam + NTK
+ Per-layer LR (no align)

+ optimal constants

2 13 2 11 2 9 2 7 2 5

Base Learning Rate

2.6

2.8

3.0

3.2

3.4

Adam + muP
+ Per-layer LR (no align)

+ optimal constants

2 9 2 7 2 5 2 3 2 1

Base Learning Rate

2.6

2.8

3.0

3.2

3.4

Adam + Mean Field
+ Per-layer LR (no align)

+ optimal constants

28 210 212 214

Model Dim (D)
2 15

2 13

2 11

2 9

2 7

Op
tim

al
 L

R

LR = 1.06e-01 * (D ** -0.58)
28 210 212 214

Model Dim (D)
2 9

2 7

2 5

2 3

2 1

LR = 1.01e+01 * (D ** -0.67)
28 210 212 214

Model Dim (D)
2 13

2 11

2 9

2 7

2 5

LR = 4.06e-01 * (D ** -0.69)
28 210 212 214

Model Dim (D)
2 9

2 7

2 5

2 3

2 1

LR = 1.10e-02 * (D ** 0.16)

Figure E1. Despite slight improvements in the eval loss under no alignment assumptions for NTK, muP and MFP, the full alignment
experiments show better scale-invariance of the optimal learning rate. Learning rate sweeps and power laws fit to optimal learning
rate vs model dim. Top = Adam + per-layer learning rates assuming full alignment + optimal constants. Bottom = Adam + per-layer
learning rates assuming no alignment + optimal constants. Number of training steps = 50,000.
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Table E1. Best eval losses for six largest model sizes. For each optimizer × parameterization × model size × setting, we sweep the base
LR and report the best eval loss. For per-layer epsilon experiments (rightmost two columns), we use base epsilon = 1e-12.

Global LR
+ default

Global LR
+ optimal

Per-layer LR
+ full align
+ default

Per-layer LR
+ full align
+ optimal

Per-layer LR
+ no align
+ optimal

Per-layer LR
+ perf align
+ optimal
+ per-layer eps

Per-layer LR
+ no align
+ optimal
+ per-layer eps

SGD

STP

1.1B 3.464 3.256 3.810 3.122 3.252
1.9B 3.749 3.178 3.543 3.345 3.302
4B 3.220 3.220 3.628 3.264 3.294
7B 3.414 3.214 3.601 3.124 3.089
15.3B 3.172 3.074 3.386 3.037 3.377
26.8B 3.657 3.312 3.510 3.385 3.318

NTK

1.1B 4.029 3.087 4.134 3.305 3.160
1.9B 4.029 3.385 4.029 3.374 3.325
4B 3.726 3.393 3.791 3.247 3.412
7B 3.794 3.134 3.704 3.076 3.087
15.3B 3.718 3.320 3.572 3.028 3.194
26.8B 3.732 3.210 3.627 3.313 3.324

muP

1.1B 4.029 3.188 3.973 3.188 3.074
1.9B 3.883 3.759 3.883 3.759 3.050
4B 3.852 3.666 3.796 3.666 3.627
7B 3.464 3.098 3.532 3.098 3.828
15.3B 3.357 3.252 3.430 3.578 3.166
26.8B 4.224 3.810 4.184 3.809 4.222

MFP

1.1B 3.805 4.010 4.255 4.082 4.095
1.9B 4.217 4.057 4.378 4.132 4.048
4B 4.131 3.795 3.939 3.946 3.782
7B 3.874 3.825 4.034 3.820 3.700
15.3B 3.968 3.910 4.131 3.945 3.742
26.8B 4.131 4.092 4.319 4.092 3.898

Adam

STP

1.1B 2.776 2.760 2.766 2.757 2.758 2.757 2.758
1.9B 2.734 2.715 2.717 2.713 2.713 2.714 2.713
4B 2.688 2.667 2.666 2.660 2.663 2.661 2.663
7B 2.665 2.641 2.636 2.632 2.634 2.632 2.633
15.3B 2.638 2.608 2.598 2.594 2.596 2.593 2.596
26.8B 2.625 2.590 2.576 2.572 2.575 2.573 2.576

NTK

1.1B 2.782 2.761 2.789 2.764 2.763 2.761 2.763
1.9B 2.736 2.726 2.743 2.726 2.720 2.717 2.719
4B 2.672 2.674 2.695 2.674 2.668 2.665 2.666
7B 2.647 2.643 2.666 2.648 2.638 2.634 2.636
15.3B 2.605 2.605 2.634 2.611 2.604 2.600 2.597
26.8B 2.592 2.584 2.615 2.591 2.581 2.576 2.577

muP

1.1B 2.822 2.773 2.802 2.774 2.771 2.773 2.770
1.9B 2.799 2.730 2.755 2.731 2.725 2.728 2.727
4B 2.756 2.682 2.714 2.680 2.674 2.680 2.679
7B 2.738 2.656 2.692 2.651 2.647 2.652 2.646
15.3B 2.729 2.628 2.664 2.623 2.612 2.623 2.611
26.8B 2.727 2.614 2.646 2.599 2.590 2.601 2.590

MFP

1.1B 2.816 2.798 2.807 2.793 2.787 2.778 2.780
1.9B 2.770 2.756 2.756 2.750 2.739 2.736 2.738
4B 2.717 2.711 2.706 2.711 2.693 2.681 2.680
7B 2.699 2.693 2.686 2.694 2.675 2.645 2.649
15.3B 2.668 2.650 2.649 2.651 2.639 2.612 2.609
26.8B 2.638 2.649 2.630 2.633 2.638 2.590 2.583

Adam+
Param
Scaling

STP

1.1B 2.778 2.760 2.784 2.779 2.760 2.815 2.765
1.9B 2.722 2.717 2.723 2.753 2.717 2.780 2.716
4B 2.668 2.668 2.677 2.730 2.668 2.737 2.667
7B 2.637 2.638 2.660 2.709 2.638 2.718 2.635
15.3B 2.600 2.599 2.630 2.687 2.599 2.691 2.601
26.8B 2.580 2.577 2.613 2.675 2.577 2.678 2.576

NTK

1.1B 2.751 2.753 2.759 2.786 2.753 2.792 2.735
1.9B 2.699 2.698 2.722 2.752 2.698 2.760 2.690
4B 2.654 2.653 2.680 2.721 2.653 2.716 2.643
7B 2.624 2.626 2.658 2.703 2.626 2.696 2.613
15.3B 2.592 2.591 2.632 2.681 2.591 2.669 2.580
26.8B 2.570 2.566 2.623 2.667 2.566 2.654 2.554

muP

1.1B 2.740 2.738 2.753 2.746 2.738 2.748 2.738
1.9B 2.698 2.694 2.727 2.705 2.694 2.711 2.691
4B 2.654 2.651 2.701 2.666 2.651 2.669 2.656
7B 2.627 2.623 2.682 2.643 2.623 2.649 2.625
15.3B 2.590 2.591 2.659 2.618 2.591 2.622 2.598
26.8B 2.574 2.575 2.655 2.606 2.575 2.611 2.574

MFP

1.1B 2.773 2.770 2.775 2.832 2.770 2.847 2.787
1.9B 2.727 2.729 2.730 2.843 2.729 2.806 2.742
4B 2.675 2.701 2.698 2.804 2.701 2.776 2.697
7B 2.669 2.679 2.675 2.781 2.679 2.765 2.659
15.3B 2.641 2.648 2.656 2.765 2.648 2.740 2.622
26.8B 2.624 2.623 2.640 2.772 2.623 2.730 2.602
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Figure E2. Eval losses for the six largest model sizes for all settings with optimal constants. Rows = optimizers (SGD, Adam, Adam+parameter scaling), columns = parameterizations
(standard, NTK, muP, Mean Field). Settings denoted ”+eps” use per-layer epsilon with base epsilon = 1e-12. Note that Adam+parameter scaling global learning rate coincides with
per-layer no alignment so there is no separate curve to show for global learning rates in the bottom row.
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Figure E3. Ablation showing eval losses for the six largest model sizes for all combinations of global or per-layer (full alignment) learning rates, and default or optimal constants. Rows
= optimizers (SGD, Adam, Adam+parameter scaling), columns = parameterizations (standard, NTK, muP, Mean Field).
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F. Additional Adam Epsilon Experiments

In this section, we include additional results for epsilon experiments across all parameterizations.

In Figure F1, we show heatmaps from tuning epsilon on all parameterizations. For both the constant epsilon and per-layer
epsilon settings, we perform a learning rate sweep at each model dim for each value of epsilon or base epsilon. Using
the best eval loss from each learning rate sweep, the heatmaps compare the eval loss to the other values of epsilon within
that epsilon setting for that parameterization and model size. That is, each heatmap entry is colored based on the absolute
difference to the best eval loss of the six entries in its row.

These results show that all parameterizations are affected by the choice of epsilon, but that different parameterizations have
both different optimal values and different levels of sensitivity to epsilon. In all parameterizations, a constant epsilon of
1e-30 is too small and harms performance for the largest 26.8B parameter model (D = 16,384). Similarly, for per-layer
epsilon, a base epsilon of 1e-4 is too large and harms performance. Compared to standard parameterization, muP tolerates
large values of epsilon better (e.g. per-layer epsilon with base epsilon = 1e-4) and is harmed more by very small value
epsilon (e.g. constant epsilon = 1e-30). Mean-field parameterization is most sensitive to epsilon and has the most narrow
range of epsilon values with good performance, for both the constant and per-layer epsilon settings. NTK is overall quite
similar to standard parameterization, with the exception that it NTK performance is harmed slightly by the default constant
value of 1e-9.

In Figure F2, we show the eval loss vs model size for all three epsilon mitigations (constant epsilon = 1e-15, per-layer
epsilon with base epsilon = 1e-12, and Adam-atan2) compared against the baseline with the default constant epsilon of
1e-9 in all parameterizations. All three epsilon mitigations result in similar performance improvements, with different
parameterizations having different sensitivity. Both standard and muP perform well with the default constant value of
epsilon (1e-9) in our model sizes and are not affected by any of the epsilon mitigations. NTK performance improves slightly
and MFP performance improves more substantially with all of the epsilon mitigations.

Figure F1. All parameterizations are affected by epsilon but different parameterizations have different levels of sensitivity and
different optimal values. All experiments use Adam + per-layer learning rates assuming full alignment + optimal constants. Top row =
constant epsilon, bottom row = per-layer epsilon. Number of training steps = 50,000.
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Figure F2. All three epsilon mitigations similarly improve Adam performance on NTK and MFP, and do not change performance
on STP and muP. Experiments for all parameterizations comparing the three epsilon mitigations for Adam (small constant epsilon =
1e-15, per-layer epsilon with base epsilon = 1e-12, and Adam-atan2) to the baseline default constant epsilon of 1e-9.
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G. Weight Decay Experiments

In current practice, weight decay is typically used for training large Transformers and may improve training stability by
providing a small amount of regularization (Brown et al., 2020). For the majority of our experiments, we do not use weight
decay in order to reduce the number of possible confounding factors and focus our investigation on the impact of the
parameterization and optimizer choices.

As a cross-check to ensure our conclusions are likely to transfer to settings with weight decay, we perform a set of
experiments for Adam using per-layer learning rates assuming full alignment with a small constant weight decay of 1e-4,
using “decoupled” or “independent” weight decay as proposed in AdamW (Loshchilov & Hutter, 2018). In decoupled
weight decay, the weight decay is not scaled by the base learning rate; our value of 1e-4 decoupled weight decay corresponds
to the higher values around 1e-2 or 1e-1 typically used for weight decay that does scale by the base learning rate.

Across parameterizations, with weight decay we see an improvement in the eval loss but similar learning rate scaling
compared to the no weight decay setting. This suggests that while weight decay plays a beneficial role, it does not
significantly alter the scaling behavior or have major parameterization-specific interactions and therefore we expect that our
conclusions should transfer to settings with a small amount of weight decay. Learning rate sweeps for the weight decay
experiments are included in Figure G2.
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Figure G1. Weight decay = 1e-4 (decoupled) improves the eval loss for all parameterizations and model sizes but overall scaling
behavior is similar. All experiments use Adam + per-layer learning rates assuming full alignment + default constants. Number of training
steps = 50,000.
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Figure G2. Weight decay improves eval losses but learning rate scaling behavior is similar. Top = Adam + per-layer learning rates assuming full alignment + default constants + no
weight decay. Bottom = Adam + per-layer learning rates assuming full alignment + default constants + decoupled weight decay = 1e-4. Number of training steps = 50,000.
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H. Adafactor and Adam + Parameter Scaling experiments

As a cross-check that Adafactor and Adam + parameter scaling are in similar width-scaling regimes, we compare the two
optimizers on all parameterizations in two settings: global learning rate + default constants and per-layer learning rate +
full alignment + optimal constants. Due to the factored matrices in Adafactor, we encountered issues with tensor shape
mismatches when using Adafactor with our implementation of FSDP, which the limited the model sizes we could use for
Adafactor. Instead, we use Adam + parameter scaling for all our experiments in Section 4.2.

See Appendix C.3 for details on the optimizers and hyperparameters. The differences between Adam+parameter scaling and
Adafactor are: the factored second moment estimate in Adafactor, different values of beta1 and beta2, update clipping in
Adafactor, and the value of epsilon. We see in Figure H1 that there are minor differences in performance but overall the
optimizers show similar scaling behavior across model sizes up to 4B parameters, suggesting these two optimizers should
be considered members of the same width-scaling regime.
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Figure H1. Adafactor and Adam + parameter scaling are in the same width-scaling regime. Figures show the best eval loss across a
learning rate sweep at each model size for both optimizers. Top row = global learning rate + default constants, bottom row = per-layer
learning rate assuming full alignment + optimal constants. There are minor performance differences between the optimizers but the overall
scaling behavior is similar in all settings.
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I. Fixed Step vs Compute Optimal experiments

Since the cost of compute is currently the most significant factor that limits the scale of large model training runs, the dominant
paradigm for training large models in practice is the compute-optimal regime. The compute-optimal setting (Kaplan, 2019)
aims to maximize model performance under a fixed budget of FLOPS for training, where these FLOPS can be traded off
between the number of parameters in the model and the number of training tokens the model is trained on. The Chinchilla
paper (Hoffmann et al., 2022) finds empirically that the optimal tradeoff occurs when the number of parameters and number
of tokens scale in proportion. When the batch size and context length are fixed, as in our setting, the number of training
tokens is proportional to the number of training steps. Due to the n× n parameter matrices in dense hidden layers with
width n, the number of parameters grow quadratically with respect to the width. Therefore, the Chinchilla results imply that
the compute optimal number of steps grows quadratically with respect to the model width.

This contradicts the fixed step assumption used in the theoretical derivations in both this paper and Yang & Hu (2021); Yang
& Littwin (2023), which assume that the number of training steps T is O(1). Intuitively, this fixed step assumption is used
so that the derivations can consider the contributions to the scaling exponents of a single step at a time: if we satisfactorily
bound the contribution of each step to the scaling exponents, and then take only a constant number of steps, then the constant
number of steps does not introduce any width-dependent scaling factors. The naive extension of this theory to a setting with
Θ(n2) instead of O(1) training steps would give impractical bounds: in the worst-case analysis, each learning rate would
need to be divided by n2 to correct for the n2 number of steps giving learning rates that are far too conservative to be useful.

We therefore take an empirical approach rather than a worst-case theoretical analysis to investigate the role of the training
horizon. We perform a set of experiments using both fixed step and compute optimal training horizons in the global learning
rate settings for SGD+momentum, Adam and Adafactor across all parameterizations using default constant learning rate
multipliers. In each setting, we sweep both model width and learning rate, and then fit a power law with an irreducible loss
term to determine the scaling exponent for the optimal learning rate. The measured learning rate exponents are reported in
Table I1. For all fixed step experiments, we train for 50,000 steps. For the compute optimal setting, we compute the training
horizon using the Chinchilla-optimal heuristic (Hoffmann et al., 2022) with 20x multiplier, i.e. the number of training tokens
is equal to 20 times the number of non-embedding parameters. Full results for the learning rate sweeps are included in
Figure I1, I2 and I3.

Table I1. Power law exponents fit to the optimal learning rate vs model dimension for each optimizer × parameterization combination,
measured for fixed step (50k) and compute optimal training horizon experiments.

Fixed Step (50k) Compute Optimal

SGD

STP -0.38 -1.27
NTK 0.56 0.04
muP -0.17 -0.85
MFP 0.31 -0.41

Adam

STP -0.95 -1.18
NTK -0.66 -0.67
muP -1.09 -1.38
MFP -0.16 -0.45

Adafactor

STP -0.12 -0.55
NTK -0.10 -0.52
muP -0.15 -0.66
MFP -0.09 -0.57

Our exponent measurements show that in every parameterization × optimizer setting, the learning rate exponent in the
compute optimal setting is smaller than in the fixed steps setting, indicating that the learning rate would need to decrease
more aggressively as width grows than predictions from the fixed steps setting would imply. The median difference from the
twelve optimizer × parameterization settings is 0.46 and ranges from 0.01 to 0.89. We note this difference of 0.46 is much
less than the difference of 2 that would come from the naive worst-case theoretical analysis.

This result has implications both for theoretical and empirical settings. First, it motivates theoretical work to consider the
compute optimal setting instead of the fixed steps setting. Second, it implies that hyperparameter search should be careful
not to assume that results from the fixed step setting will extrapolate to the compute optimal setting. In particular, given
a fixed compute budget to spend on hyperparameter search before training a single large model with a compute optimal
horizon, one possible approach to choosing the learning rate would be to train model sizes close to the final model size
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for shorter training horizons, and use this to extrapolate the best learning rate for the large model compute optimal run. A
priori, this strategy might be advantageous because the shorter training horizons let you use larger models for the same
hyperparameter search budget so the search occurs closer in size to the final model. However, our results suggest that this
may not be a viable strategy: if we extrapolate a learning rate to larger models based on an exponent fitted in the fixed
steps setting, we may significantly overestimate the learning rate that is optimal in the compute optimal setting. Instead,
we recommend considering performing the hyperparameter search for the learning rate by training smaller models at their
compute optimal training horizon and then extrapolating across model sizes to the compute optimal setting for the largest
model.
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SGD global learning rate experiments: 50k steps and compute optimal
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Figure I1. SGD learning rate sweeps and power laws fit to optimal learning rate vs model dim, using global learning rate and default constants. Top = 50,000 steps. Bottom = compute
optimal (Chinchilla 20x) training steps.
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Adam global learning rate experiments: 50k steps and compute optimal
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Figure I2. Adam learning rate sweeps and power laws fit to optimal learning rate vs model dim, using global learning rate and default constants. Top = 50,000 steps. Bottom = compute
optimal (Chinchilla 20x) training steps.
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Adafactor global learning rate experiments: 50k steps and compute optimal
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Figure I3. Adafactor learning rate sweeps and power laws fit to optimal learning rate vs model dim, using global learning rate and default constants. Top = 50,000 steps. Bottom =
compute optimal (Chinchilla 20x) training steps.
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J. Learning Rate Sweeps for SGD, all settings
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Figure J1. Learning rate sweeps and power laws fit to optimal learning rate vs model dim. Top = SGD + global learning rate + default constants. Bottom = SGD + global learning rate +
optimal constants. Number of training steps = 50,000.
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Figure J2. Learning rate sweeps and power laws fit to optimal learning rate vs model dim. Top = SGD + per-layer learning rate assuming full alignment + default constants. Bottom =
SGD + per-layer learning rate assuming full alignment + optimal constants. Number of training steps = 50,000.
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Figure J3. Learning rate sweeps and power laws fit to optimal learning rate vs model dim. SGD + per-layer learning rate assuming no alignment + optimal constants. Number of
training steps = 50,000.
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K. Learning Rate Sweeps for Adam, all settings

2 15 2 13 2 11 2 9 2 7

Base Learning Rate

2.6

2.8

3.0

3.2

3.4
Ev

al
 L

os
s

Adam + Standard
+ Global LR

+ default constants

D=128
D=256
D=512
D=768
D=1024
D=1536
D=2048
D=2560
D=3072
D=4096
D=6144
D=8192
D=12288
D=16384

2 9 2 7 2 5 2 3 2 1

Base Learning Rate

2.6

2.8

3.0

3.2

3.4

Adam + NTK
+ Global LR

+ default constants

2 13 2 11 2 9 2 7 2 5

Base Learning Rate

2.6

2.8

3.0

3.2

3.4

Adam + muP
+ Global LR

+ default constants

2 9 2 7 2 5 2 3 2 1

Base Learning Rate

2.6

2.8

3.0

3.2

3.4

Adam + Mean Field
+ Global LR

+ default constants

28 210 212 214

Model Dim (D)
2 15

2 13

2 11

2 9

2 7

Op
tim

al
 L

R

LR = 1.21e+00 * (D ** -0.94)
28 210 212 214

Model Dim (D)
2 9

2 7

2 5

2 3

2 1

LR = 1.49e+01 * (D ** -0.71)
28 210 212 214

Model Dim (D)
2 13

2 11

2 9

2 7

2 5

LR = 9.28e+00 * (D ** -1.15)

28 210 212 214

Model Dim (D)
2 9

2 7

2 5

2 3

2 1

LR = 7.65e-01 * (D ** -0.29)

2 15 2 13 2 11 2 9 2 7

Base Learning Rate

2.6

2.8

3.0

3.2

3.4

Ev
al

 L
os

s

Adam + Standard
+ Global LR

+ optimal constants
D=128
D=256
D=512
D=768
D=1024
D=1536
D=2048
D=2560
D=3072
D=4096
D=6144
D=8192
D=12288
D=16384

2 9 2 7 2 5 2 3 2 1

Base Learning Rate

2.6

2.8

3.0

3.2

3.4

Adam + NTK
+ Global LR

+ optimal constants

2 13 2 11 2 9 2 7 2 5

Base Learning Rate

2.6

2.8

3.0

3.2

3.4

Adam + muP
+ Global LR

+ optimal constants

2 9 2 7 2 5 2 3 2 1

Base Learning Rate

2.6

2.8

3.0

3.2

3.4

Adam + Mean Field
+ Global LR

+ optimal constants

28 210 212 214

Model Dim (D)
2 15

2 13

2 11

2 9

2 7

Op
tim

al
 L

R

LR = 2.29e+00 * (D ** -1.05)
28 210 212 214

Model Dim (D)
2 9

2 7

2 5

2 3

2 1

LR = 2.95e+00 * (D ** -0.56)
28 210 212 214

Model Dim (D)
2 13

2 11

2 9

2 7

2 5

LR = 7.16e+00 * (D ** -1.12)

28 210 212 214

Model Dim (D)
2 9

2 7

2 5

2 3

2 1

LR = 1.70e-01 * (D ** -0.13)

Figure K1. Learning rate sweeps and power laws fit to optimal learning rate vs model dim. Top = Adam + global learning rate + default constants. Bottom = Adam + global learning
rate + optimal constants. Number of training steps = 50,000.
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Figure K2. Learning rate sweeps and power laws fit to optimal learning rate vs model dim. Top = Adam + per-layer learning rates assuming full alignment + default constants. Bottom
= Adam + per-layer learning rates assuming full alignment + optimal constants. Number of training steps = 50,000.
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Figure K3. Learning rate sweeps and power laws fit to optimal learning rate vs model dim. Top = Adam + per-layer learning rates assuming no alignment + optimal constants. Bottom
= Adam + per-layer learning rates assuming full alignment + optimal constants + per-layer epsilon with base epsilon = 1e-12. Number of training steps = 50,000.
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Figure K4. Learning rate sweeps and power laws fit to optimal learning rate vs model dim. Top = Adam + per-layer learning rates assuming no alignment + optimal constants +
per-layer epsilon with base epsilon = 1e-12. Bottom = Adam + per-layer learning rates assuming full alignment + optimal constants + constant epsilon = 1e-15. Number of training
steps = 50,000.
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Figure K5. Learning rate sweeps and power laws fit to optimal learning rate vs model dim. Adam-atan2 + per-layer learning rates assuming full alignment + optimal constants. Number
of training steps = 50,000.
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L. Learning Rate Sweeps for Adam + Parameter Scaling, all settings
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Figure L1. Learning rate sweeps and power laws fit to optimal learning rate vs model dim. Top = Adam + parameter scaling + per-layer learning rates assuming full alignment + default
constants. Bottom = Adam + parameter scaling + per-layer learning rates assuming full alignment + optimal constants. Number of training steps = 50,000.
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Figure L2. Learning rate sweeps and power laws fit to optimal learning rate vs model dim. Top = Adam + parameter scaling + per-layer learning rates assuming no alignment (equivalent
to global learning rate) + default constants. Bottom = Adam + parameter scaling + per-layer learning rates assuming no alignment (equivalent to global learning rate) + optimal
constants. Number of training steps = 50,000.
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Figure L3. Learning rate sweeps and power laws fit to optimal learning rate vs model dim. Top = Adam + parameter scaling + per-layer learning rates assuming full alignment +
optimal constants + per-layer epsilon with base epsilon = 1e-12. Bottom = Adam + parameter scaling + per-layer learning rates assuming no alignment (equivalent to global learning
rate) + optimal constants + per-layer epsilon with base epsilon = 1e-12. Number of training steps = 50,000.
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