
Training LLMs over Neurally Compressed Text

Brian Lestera Jaehoon Leea Alex Alemia Jeffrey Penningtona

Adam Robertsa Jascha Sohl-Dicksteinb∗ Noah Constanta
aGoogle DeepMind bAnthropic

{brianlester, nconstant}@google.com

Abstract

In this paper, we explore the idea of training large language models (LLMs) over
highly compressed text. While standard subword tokenizers compress text by a
small factor, neural text compressors can achieve much higher rates of compression.
If it were possible to train LLMs directly over neurally compressed text, this would
confer advantages in training and serving efficiency, as well as easier handling of
long text spans. The main obstacle to this goal is that strong compression tends
to produce opaque outputs that are not well-suited for learning. In particular, we
find that text naïvely compressed via Arithmetic Coding is not readily learnable by
LLMs. To overcome this, we propose Equal-Info Windows, a novel compression
technique whereby text is segmented into blocks that each compress to the same
bit length. Using this method, we demonstrate effective learning over neurally
compressed text that improves with scale, and outperforms byte-level baselines by
a wide margin on perplexity and inference speed benchmarks. While our method
delivers worse perplexity than subword tokenizers for models trained with the same
parameter count, it has the benefit of shorter sequence lengths. Shorter sequence
lengths require fewer autoregressive generation steps, and reduce latency. Finally,
we provide extensive analysis of the properties that contribute to learnability, and
offer concrete suggestions for how to further improve the performance of high-
compression tokenizers.

1 Introduction

Today’s large language models (LLMs) are almost exclusively trained over subword tokens. The
tokenizers used to produce these tokens—often BPE [23, 56] or Unigram [37], as implemented by the
SentencePiece library [38]—are compressors that typically achieve ~4× compression over natural
language text [74].1 While these tokenizers “hide” the character-level makeup of each token from the
LLM [74, 44], this downside is widely seen as outweighed by the significant benefits of compression.
Compared to raw byte-level models, an LLM trained over subword tokens sees ~4× more text per
token, allowing it to model longer-distance dependencies, ingest more pretraining data, and predict
more text at inference time, all without increasing compute.2

Given these advantages, it raises the question, could we compress text further to achieve even
greater gains? It is well known that autoregressive language models can be turned into lossless

∗Work done while at Google DeepMind.
1We refer here to “token-level” compression rate, i.e., the length reduction between a raw UTF-8 byte

sequence and the corresponding sequence of subword tokens. If instead we measure the number of bits required
to encode the two sequences, subword compression typically delivers ~2× or less compression, depending on
vocabulary size, which typically ranges from 32k to 256k. See Section 3.4 for discussion.

2The increased cost of the input embedding and final softmax layers due to increased vocabulary size is
negligible for all but the smallest models.

Preprint.

ar
X

iv
:2

40
4.

03
62

6v
1

 [
cs

.C
L

]
 4

 A
pr

 2
02

4

M1
LM over bytes

Neural compr

e o i a u

M2
LM over

compressed text

Neural compression
can lead to better

LLM tokenizers

Compression Algorithm
(e.g. Arithmetic Coding)

010000110011101010111100
100000100110000101111101

67 58 188 130 97 125

chunk into
token IDs

next byte
probabilities

21 70 994 55

next token
probabilities

compressed text
as bits

compressed text
as tokens

Figure 1: An overview of our approach for training an LLM (M2) over neurally compressed text.
First, M1 is trained as a standard byte-level language model—given a leftward context, M1 assigns a
probability to each possible following byte. Next, corpus text is compressed into a bitstream using
M1 as a compressor. Specifically, the probabilities that M1 assigns at each text position are fed into
a compression algorithm like Arithmetic Coding that supports using dynamic symbol probabilities.
Finally, this bitstream is chunked into tokens (e.g., 8-bit chunks), and M2 is trained as a language
model over compressed text.

text compressors, and recent work has shown that LLMs can easily achieve 12× compression over
English text [16].3 Can we simply train an LLM over this neurally compressed text?

In this paper we explore various options for doing so, focusing primarily on the idea of using
Arithmetic Coding (AC) [73], which is known to reach the near-optimal compression rate for a
particular model that assigns probabilities to text continuations. Figure 1 presents our high-level
approach. First, a small language model “M1” is trained over raw byte sequences. Next, this frozen
model is used to compress pretraining corpus text by applying a standard compression algorithm like
AC. The resulting compressed bitstream is then chunked into tokens, which are used to train “M2”, a
language model that directly reads and writes neural-compressed text.

Given a perfect probabilistic model of the raw byte sequence, the compression step would output a
fully-compressed bitstream that would be indistinguishable from random noise, and hence unlearnable
by M2. In reality, M1 can never be perfect [78], so the M1-compressed output will still contain
learnable patterns. We explore whether using compression powered by a relatively small M1 is able
to “remove” the simple structure that M1 understands from the input—e.g., patterns of spelling,
word frequency, and basic grammar—while retaining any higher-level structure that M1 fails to
model—e.g., patterns requiring “deeper” reasoning and long range coherence. A larger M2 would
then learn to model this higher-level structure, without needing to relearn the low-level structure
removed by M1.4 In theory, this process could be repeated by training an even-larger M3 model on
text compressed by M2, and so on.

In practice, we find that text compressed via Arithmetic Coding is not readily learnable by a standard
transformer-based LLM, with resulting models predicting tokens at chance. Interestingly, this result
holds even when M1 is reduced to a context-free unigram model, suggesting that the challenge

3Specifically, the authors show that Chincilla 70B [30] can compress 2048-byte subspans of enwik9 at a 12×
bit-level compression rate.

4Intuitively, training M2 could be seen as analogous to fitting the residuals of M1 [21].

2

of modeling AC-compressed text stems from the difficulty of learning the AC compression and
decompression process itself. We verify this hypothesis by showing that even the sub-tasks of
AC-compressing and AC-decompressing text are not learned well beyond a few initial tokens.

To aid learnability, we propose compression via Equal-Info Windows, a simple technique that breaks
text into contiguous windows and compresses them via Arithmetic Coding independently. Rather
than splitting text into windows of equal text length, we track the number of bits output by the
compressor, and close each window just before it exceeds a set information threshold (e.g., 32 bits of
information). This has the advantage that when chunking the subsequent bitstream into M2 tokens,
there is a stable mapping from N tokens to one window (e.g., four 8-bit tokens⇒ one 32-bit window).
At each window boundary, we reset both AC algorithm and the M1 model context. This ensures that
each window may be mapped back onto raw text without any additional information.

Through ablations on window size and M2 vocabulary size, we find that Equal-Info Windows make
learning of AC-compressed text possible across a range of settings. However, we also observe
that learning progresses gradually, starting with tokens at the left edge of each window, and for
longer windows, the model learns little about the tokens near the right edge. Our best-performing
setting uses short 16-bit windows that each correspond to a single 16-bit M2 token. Despite resetting
the compression algorithm every 16 bits, we still achieve ~5.3× token-level compression overall,
which exceeds standard subword tokenizers. Remarkably, our best M2 models outperform byte-level
baselines on perplexity benchmarks (bits/byte) for fixed computation budget (FLOPs/byte). This
shows that learning over neural-compressed text can be effective.

At the same time, our best M2 models underperform subword baselines. We suspect this is due at
least in part to the relatively unstable mappings our neural tokenizers induce between words and
tokens. By contrast, standard subword tokenizers induce essentially stable word-to-token mappings,
which likely makes the token sequences they output well-suited for LLM training.5 We illustrate
this contrast through qualitative examples. Whether a neural tokenizer can reach a high level of
compression while maintaining high learnability for LLM training is an interesting question for future
research.

Our main contributions are as follows: (1) Outline advantages and challenges of training over neural
compressed text. (2) Compare LLMs trained over different tokenizers along two axes: bits/byte
and FLOPs/byte. (3) Show that standard LLMs can’t learn to model vanilla AC-compressed text.
(4) Show that GZip-compressed text is learnable by standard LLMs, but not competitive. (5) Propose
compression via Equal-Info Windows, and show that it enables learning over neural compressed text.

2 Motivation and Background

2.1 Advantages of Training over Neural-Compressed Text

Training LLMs over compressed text is appealing for many reasons. We discuss three advantages in
detail below.

Efficiency The most straightforward advantage is efficiency. By compressing the same text into
a shorter token sequence, the model can process more text for the same computational cost. In
particular, a model trained over C× compressed text will see C× more text during training compared
to a model trained over raw text, given an equal compute budget. Increasing the amount of data seen
in pretraining is often an effective means of improving performance [35, 30]. Processing text more
efficiently also confers benefits at inference time, reducing the serving cost for handling a request of a
given prompt and continuation length. In addition to reducing the raw compute needed for inference,
compression can also improve inference latency, since generating better-compressed output requires
fewer sequential autoregressive steps.

Longer Context A second advantage is that working with compressed text allows modeling longer
contextual dependencies. In vanilla transformer-based models, computation for the self-attention
layer scales quadratically with the sequence length, O(n2d). This has limited the sequence lengths

5See Appendix L for some counterexamples to subword tokenizers producing stable word-to-token mappings.

3

used by such models in practical settings to ~10k tokens.6 If, via compression, each token represents
(on average) C bytes of raw text, then the resulting LLM can model dependencies across C× longer
distances compared to a raw text model operating over the same token sequence length. While
the benefits of modeling longer context (beyond ~1,000 bytes) are modest when viewed merely as
perplexity gains [51], the ability to condition on long context is critical for many applications, such
as retrieving content from a document, or answering a coding question provided documentation.

Distribution of Compute A third potential advantage of training over compressed text is that
information will be spread more uniformly across the sequence. By the nature of compression, a
text span that is relatively predictable (e.g., a boilerplate notice) will be more compressible than
a span with high perplexity (e.g., a unique product serial number). When an LLM is trained over
well-compressed text, each token will represent roughly an equal amount of information. Since the
LLM allocates equal compute to each token, this amounts to allocating more compute for “harder”
text spans. This adaptivity is similar in spirit to “Adaptive Computation Time” (ACT) [27], which
learns to allocate additional compute at some sequence positions in an end-to-end manner, but with
the advantage that in our case the computation remains “dense”—identical operations are applied at
each position.7

2.2 Challenges of Training over Compressed Text

Learnability It is not at all obvious what types of compression are “transparent” enough to be
learnable through a standard LLM training process. Strong compression can be seen as removing as
much redundant or predictable information from a sequence as possible. Consequently, the bitstream
output by a good compressor is inherently hard to distinguish from random noise. In this work, we
explore the setting where M2—the model trained over compressed text—has a larger capacity than
M1, the model used for compression. In principle, this setup should allow M2 to extract additional
information from the signal even after M1 has compressed it. However, for strong enough M1
compression, the resulting bitstream may be too noisy to detect any signal.

As a prerequisite for M2 to effectively predict continuations of compressed text, we anticipate that it
is necessary for M2 to have the ability to decompress bits→ text and compress text→ bits. These
sub-tasks are challenging in their own right. First, M2 needs to accurately “simulate” M1 in order to
know the probabilities it assigns to the text, which determine the output of compression.8 Training
models to mimic other models can be difficult [41], and even in settings where models do learn to
copy the behavior of another network [29], this is often only when looking at which symbol was
assigned the highest probability—the actual probabilities assigned often differ [60]. Second, M2
needs to learn the compression procedure itself. In our case, this means tracking the Arithmetic
Coding algorithm, which requires maintaining high-precision numerical state across long contexts.
We investigate these sub-tasks in detail in Section 5.2.

A further learnability challenge is the high level of context sensitivity needed to interpret a bitstream
of compressed text. When chunked into tokens, a particular bit subsequence (e.g., 10111001) can
map onto the same token despite having no stable “meaning” across occurrences. We show examples
in Section 6.1, where a token maps to many different underlying text forms, necessitating strong
contextual understanding. While LLMs are robust to some level of polysemy, as highlighted by the
success of Hash Embeddings [62] where multiple unrelated words share a single token representation,
we suspect this has its limits.

Numerical Stability An additional technical challenge is that compression methods can be sensitive
to the precise model probabilities used. To achieve lossless compression in our setup, it is critical that

6Exploring sub-quadratic attention mechanisms is an area of active research [1, 70, 36, 75, 5, 9, et alia].
However, regardless of the cost of attention, compressing the input increases the effective context “for free”.

7It should be noted that ACT learns to allocate more compute where it is useful, as opposed to merely where
the predictions are hard. For example, ACT learns to not waste compute on inherently unpredictable text spans.
We expect that as a heuristic, allocating more compute to higher-perplexity text spans is valuable, but leave this
to future work to verify.

8For Arithmetic Coding, not only would M2 need to know the probabilities M1 assigns to the observed
text, but it would also need to know the probabilities assigned to many unobserved symbols. This is because
Arithmetic Coding operates over cumulative probabilities, i.e., the probability that the next symbol is e or any
alphabetically preceding symbol.

4

the M1 probabilities match during compression and decompression. This can be hard to guarantee in
practice, as there are many sources of numerical noise in LLM inference, especially when running on
parallel hardware. An expanded discussion of numerical stability issues can be found in Section 3.7.

Multi-Model Inference Finally, a specific challenge of training over neural compressed text is that
multiple models need to be stored and run side-by-side in order to perform inference. We assume that
if M1 is relatively small, this additional overhead is not a significant drawback compared to a standard
tokenizer, which is also a separate model that is needed to tokenize text input and detokenize LLM
outputs. In evaluating our approach, we include M1 compute in our calculations of total inference
cost (FLOPs/byte).

2.3 Compression

In this work, we focus on lossless compression, which aims to encode a sequence of input symbols,
x0:N = {x0, x1, . . . , xN} ∈ X |V |, into a bitstream while minimizing the expected length of the
bitstream. Compression methods are often factored into a “modeling” component and a “coding”
component [45]. The input sequence can be viewed as a sample from a true distribution p, x0:N ∼ p,
with a standard autoregressive decomposition, p(x0:N) =

∏N
i=1 p(xi|x0, . . . , xi−1). The “modeling”

component aims to approximate p with p̂. While some compression algorithms assume static
probabilities for each symbol, stronger algorithms are “adaptive”, meaning that symbol probabilities
may change based on context. In this work, we use context-aware transformer-based language models
to represent p̂.

The “coding” component of a compression algorithm converts the input sequence to a bitstream of
length ℓ(x0:N). To maximize compression, we want a coding algorithm that minimizes the expected
number of bits in the bitstream, L := Ex0:N∼p[ℓ(x0:N)]. This is done by assigning shorter bit
sequences to common symbols and longer sequences to less common ones.9 The expected length is
lower bounded by L ≥ H(p) where H(p) := Ex0:N∼p[− log2 p(x)] [57]. This means that, given a
near-optimal coding algorithm, the achievable level of compression derives from how well the model
p̂ approximates p.

2.4 Arithmetic Coding

Arithmetic Coding [53, 49] uses a model p̂ to compresses a sequence x0:N to a bitstream, which is
the binary expansion of a float f ∈ [0, 1). The float f is found by assigning successively smaller
sub-intervals to each symbol xi ∈ x0:N , with the final interval enclosing f . An interval is made of an
upper and lower bound, Ii = [li, ui) and its size is given by ui − li. Starting with I0 = [0, 1), at each
step of encoding, the interval for the symbol xi is created by partitioning the interval Ii−1 based on
the cumulative distribution of p̂ given the previous context, p̂cdf (xi|x<i). The size of this interval is
given by size(Ii−1) ∗ p̂(xi|x<i). Thus:

Ii(xi) :=
[
li−1 + size(Ii−1) ∗ p̂cdf (w|x<i), li−1 + size(Ii−1) ∗ p̂cdf (xi|x<i)

)
,

where w ∈ X is the symbol before xi in a strict ordering of X , i.e., w is the previous token in the
vocabulary. Finally, the bitstream of minimal length that represents the binary expansion of a number
inside the final interval f ∈ IN (x0:N) is used as the compressed representation.

Equivalently, the binary expansion can be seen as maintaining a bitstream prefix b and creating
successive intervals Bj(b, x ∈ {0, 1}) := [blj , buj) by partitioning the current interval in half. If
the first interval is chosen, a 0 bit is appended to the bitstream prefix b, while choosing the second
interval appends a 1.

Bj(b, 0) :=
[
blj−1, blj−1 + size(Bj−1) ∗ 0.5

)
Bj(b, 1) :=

[
blj−1 + size(Bj−1) ∗ 0.5, buj−1

)
9This process can result in extremely uncommon sequences becoming longer under compression, as no algo-

rithm can compress all possible input strings [45]. In practice, natural language inputs are highly compressible
and these edge cases are inputs that one would not recognize as natural language.

5

Once the final interval IN is computed, smaller and smaller bit intervals are created until reaching a
bit interval BT (b) that is fully enclosed by IN . At this point, the corresponding bitstream b is the
final compressed representation.

The coding component of Arithmetic Coding is nearly optimal: the output bitstream will have a
length of −⌈log p̂(x0:N)⌉+ 1 bits when using infinite precision. In the finite precision setting using
β bits, an extra O(N2−β) bits are added [31]. See [73] for an example implementation. In our
experiments, we use precision β = 14. The practical effect of using a finite precision implementation
of Arithmetic Coding is that the model’s cumulative distribution gets quantized to integers using β
bits. This results in a minimum probability of 2−β being assigned to all tokens.

2.5 Related Work

Recent work has looked at using large language models for compression, but has not to our knowledge
attempted to train subsequent models over the resulting compressed output. Works like [16] use a
transformer language model as the modeling component of Arithmetic Coding, but they do not train
over compressed output nor do they make modifications to the compression algorithm to facilitate
learnability by downstream models. Additionally, they focus on the setting of compressing fixed-size
sequences of bytes. By contrast, our models operate over input sequences of fixed token length.
This allows for models with higher compression rates to leverage longer contexts, as more bytes are
included in the input.

[63] proposes changes to Arithmetic Coding to make it more amenable to use with LLMs—namely,
they rank sort the logits from the model before creating text intervals, Ii(x0:N). This could help
alleviate issues stemming from errors in M2’s simulation of M1. However, they do not train models
on top of their compressed output.

Some approaches to “token-free” (i.e., purely character- or byte-level) language modeling down-
sample the input sequence via convolutions [13, 61], which could be seen as a form of end-to-end
neural tokenization. However one important distinction is that the resulting tokenization is “soft”—
outputting high-dimensional vectors and not implying a discrete segmentation—in contrast to our
tokenization that outputs discrete tokens.

Methods for learning discrete tokenization end-to-end have also been proposed [11, 25]. In the case
of MANTa [25], the learned segmentation appears to be fairly semantic (i.e., respecting word and
morpheme boundaries), which could be an advantage over our approach. However, they lack our bias
towards encoding an equal amount of information per token.

In modeling audio, it is common practice to use learned tokenizers that compress the raw input signal
to discrete tokens from a fixed-size codebook [64, 3, 12, 6]. However, this compression is lossy,
whereas we focus on lossless compression.

Other recent work focuses on using the “modeling” component from well-known compressors to do
other tasks. [34] uses the model from GZip to perform text classification. [68] uses the Arithmetic
Decoding algorithm with an LLM as the model to do diverse parallel sampling from that LLM. One
could imagine that the “model” of our compressors (M1) is a teacher for M2, but unlike these other
applications, the M1 values are not used outside of compression.

[40] also explores learning over compressed text, but with several key differences. First, they use
n-gram language models [57] while we use LLMs. Second, their model is conditioned on compressed
bitstreams but produces a distribution over the raw, uncompressed, bytes while our M2 models predict
directly in the compressed space. Additionally, they only consider static Huffman coding [32] as the
algorithm to compress model inputs. While this avoids the context sensitivity issues we outline in
Section 2.2, it results in a far worse compression rate compared to the adaptive compression methods
we use. One important distinction is that their equal-information windows are overlapping, and
used as a sliding window to provide context to their n-gram language model. By contrast our equal-
information windows are non-overlapping, and used to segment text into a series of equal-length
bitstrings that can be interpreted independently by M2, and whose boundaries are easily identifiable,
as they map to a fixed number of M2 tokens.

Concurrently, [26] explores how the compression performance of a tokenizer correlates with down-
stream model performance. They find that tokenizers that compress better perform better, which
generally aligns with our findings, particularly in the large vocabulary setting, see Fig. 6. However,

6

we find that using the strongest compressors is detrimental to learnability, as seen in the AC line in
Fig. 3. These conflicting results likely stem from differences in tokenization strategy. Their work
is restricted to BPE-based compressors while we explore stronger compressors built on LLMs and
Arithmetic Coding. The qualitative differences between these classes of tokenizers are explored more
in Section 6.1.

3 Methods

For each experiment, we compress long contiguous sequences of training data using different methods.
For several, we use M1—a byte-level language model—as p̂ in the compression algorithm. We then
chunk the compressed output into tokens and train M2 models over those tokens.

3.1 Training Data

All training data used is English web text from C4 (en 3.1.0) [52]. After tokenization, each document
in C4 has an <EOS> token appended to it. We concatenate 128 documents together to generate a
long sequence of text. Using UTF-8 byte-level tokenization, the average document length is 2,170
bytes, thus these long sequences have an average length of 277,760 bytes. Despite the document
breaks, we consider these long sequences “continguous” for the training of language models. These
sequences are then split into individual examples, which are shuffled using the deterministic dataset
functionality from SeqIO [54].

3.2 Training M1

The model used for compression is a decoder-only Transformer model [67]. It uses the 3m size seen
in Table 4 and a context length of 1,024. We use a batch size of 128, an rsqrt decay learning rate
schedule (1/

√
steps) starting at 1.0 with 10,000 warmup steps, and a z-loss of 0.0001. The model is

trained for 2,500,000 steps using the Adafactor [59] optimizer. The feed-forward layers use ReLU
activations [47, 22], and we use distinct learnable relative attention embeddings [58] at each layer.
We use a deterministic SeqIO dataset and train using Jax [7], Flax [28], and T5X [54]. The final
validation performance of the M1 model is 1.457 bits/byte, a standard measure of perplexity, see
Section 3.8. M1 and M2 are both trained on the C4 training data, but the final validation data used to
evaluate M2 is unseen during M1 training, therefore there is no information leakage. This is similar
to how LLM tokenizers are often trained on same dataset that the LLM is subsequently trained on.

3.3 Compression Methods

When compressing C4 training data, we use an example length of 10,240 bytes and apply one of the
following compression techniques (see Appendix H for more methods we considered). This results
in compressed examples that are, on average, much longer than our target sequence length of 512
M2 tokens. Thus, each example fills or nearly fills the model’s context window with a compressed
sequence made from contiguous raw bytes. We compress 51,200,000 examples using each method,
allowing us to train each M2 model for 200,000 steps without repeating data.

Arithmetic Coding: In this setting, we use a decoder-only transformer language model to model p̂,
that is, when creating the interval Ii(x0:N), the partitions for each possible character, p̂(xi|x<i), are
calculated using the probabilities for the next token output by the transformer.

The compressor model is run over contiguous text sequences of 10,240 bytes. The generated logits are
used as the model distribution for Arithmetic Coding. We use the Range Encoding (a finite-precision
implementation of Arithmetic Coding) implementation from TensorFlow Compression [4] with a
precision of 14. The range encoding implementation uses integers with precision+2 bits. This is
enough to encode 16-bit float logits, so should not cause numerical issues as our models are trained
using bfloat16. While the compressor model is only trained on sequences of length 1,024, it uses
relative position embeddings in its attention layers. Thus, it can be applied to longer sequences. Some
works observe decreased performance as inputs are scaled to lengths beyond those seen in training
[66, 51], but we find that compression performance is similar in the two settings. Compressing
sequences of length 1,024 yields a compression ratio of 5.46 while compressing sequences of length

7

10,240 yields a ratio of 5.49. This suggests the performance drop from long sequences has minimal
effect on compression, or that the increased contextual information makes up this difference.

We will see that text compressed in this straightforward manner is not readily learnable by M2. Thus,
we explore alternative compression methods that modify the “modeling” and “coding” components
for better learnability. Table 2 shows how our different approaches affect the compression ratio.

Static Logits Arithmetic Coding: One potential difficulty of learning over compressed text is that the
“modeling” component of the compression algorithm is hard to learn—that is, the second language
model (M2) has trouble learning to simulate the probabilities the compressor model (M1) assigns to
bytes.

To weaken the compressor model, we replace the context-sensitive LM model with a static byte
unigram model—that is, the model’s distribution is the same for all byte tokens in the input, i.e.,
p̂(xi|x0, . . . , xi−1) = p̂(xi). This distribution is estimated using the byte unigram statistics from the
C4 training data.

Equal Information Windows: The difficulty in modeling compressed text could also be because the
“coding” component of the compression algorithm is hard to learn. That is, the language model is not
able to track the state variables used in Arithmetic Coding.

The_three_currently_living_species_are...

M1 AC 0011101011101000 ⇔ The_thr

ree_currently_living_species_are:_African...

M1 AC 1100100011001001 ⇔ ree_c

urrently_living_species_are:_African_savanna...

M1 AC 1111000011110011 ⇔ urrently_l

The_three_currently_living_species_are:_African_savanna_eleph
ants,_African_forest_elephants,_and_the_Asian_elephants.

0011101011101000110010001100100111110000111100111001000111111
0001101100001000100000011000111010000110010111110000111011...

Figure 2: Under “Equal-Info Windows”, text is encoded into a series of N-bit windows. To determine
each successive window, the remaining text is encoded byte-by-byte via Arithmetic Coding until no
more bytes can be added without exceeding the target bit threshold, here 16 bits. Both M1 and the
AC algorithm are reset at each step, so no information persists across windows.

Our proposed method of weakening the coding component of Arithmetic Coding compression is to
reset the AC encoder once it has output a set number of bits, creating windows of fixed size where
each window is an independently AC-compressed sequence. This process is illustrated in Fig. 2.
Windows will represent a variable amount of text, but as each window is created via compression, we
expect roughly the same amount of information per window.

In addition to resetting the AC encoder, we also reset the M1 model’s context. This means that each
W bits of output can be decoded independently, at the cost of a weaker M1 model due to the lack of
context. As each window is fully self-contained, the model no longer has to learn to track Arithmetic
Coding state variables over long distances.

In cases where “spare bits” are available at the end of a window (but not enough to add an additional
symbol of text), we pad with zeros. This complicates the decoding algorithm, but the compression

8

Table 1: “Token” vs. “bit” compression ratios. Larger vocabularies require more bits to store each
token, and thus incur a cost in terms of absolute compression. However, when trying to minimize the
compute an LLM uses to process a given piece of text, token sequence length is what matters.

Method Token Compression Ratio Bit Compression Ratio
SentencePiece 4.28 2.28
AC[v=256] 5.49 5.49
AC[v=65k] 10.98 5.49

scheme remains lossless. See Appendix I for further discussion and an alternative padding approach
that gives similar results.

When compressing an additional character would result in a bitstream that is greater than W bits
long, i.e., more than W binary expansions are needed to create an interval that is enclosed by
Ii+1(x0:i+1), the bitstream (padded to W bits as necessary) representing the input up to and including
character i is emitted. Then both the AC encoder and M1 model are reset. That is, Ii+1(xi+1:N)
is calculated as if Ii(x0:i) = [0, 1); the bit interval is also reset to Bj(b = “”) := [0, 1). Similarly,
M1 is only conditioned on inputs that are part of the current window, the inputs after i. That is,
p̂(xj |x<j) ≈ p̂(xj |xi...j).

We use b to denote the bits per window, and v for the vocabulary size of M2. For example,
EqualInfoAC[(b)its=16, (v)ocab=256] represents AC encoding with 16-bit Equal Info Windows
and 8-bit M2 tokens (vocabulary 256).

GZip: As a baseline, we also explore training over text compressed using GZip [17] as implemented
in the Python [65] zlib library using the default compression level. GZip uses the DEFLATE
algorithm—a combination of Huffman Trees [32] and LZ77 [77]. First LZ77 is used to replace
repeated substrings in the text with pointers back to the original substring. Then a Huffman Tree is
built for the current—LZ77 compressed—example and used to compress it. Note that this setting
is dynamic, as the Huffman tree, and hence the binary codes for each character, are unique to the
example. These experiments explore a setting where both the modeling and coding components of
compression are different from Arithmetic Coding.

3.4 Tokenization of Compressed Text

Most compression methods output a bitstream, but training M2 directly over bits would not be ideal.
As M1 was trained over UTF-8 bytes, the bit-level output of compression would result in M2 being
applied to much longer sequences. Additionally, models are generally trained with vocabulary sizes
much larger than two. Thus, we need a method to segment the bitstream into tokens, creating a more
standard sequence for training language models.

We convert the bitstream into a token sequence by grouping every N bits into a token—resulting in a
vocabulary size of 2N . We explore settings of N ∈ {8, 16}, resulting in vocabulary sizes of v=256
and v=65,536. As the tokens are created from the compressed bitstream, we expect the distribution
of tokens to be more uniform than the usual Zipfian [76] distribution of word or subword tokens,
allowing us to use larger vocabularies without encountering issues of rare or unattested tokens.

Throughout this work, we focus on the “token compression ratio” LiT /LoT —the ratio between the
input and output token sequence lengths. It is important to note that the meaning of “token” can differ
between the input and output sequences. Generally, the input sequence is one byte per token, while
output tokens represent multiple bytes. This is in contrast to the more standard “bit compression ratio”
Lib/Lob—the ratio of input bits to output bits. As we aim to reduce the computational overhead
of running LLMs by training them on compressed input, we are more concerned with reducing the
number of tokens that M2 consumes. This difference is elucidated in Table 1. While SentencePiece
results in a sequence length reduction of 4.28×, the larger vocabulary means that 15 bits are required
to represent each token. As such, the bit compression ratio is only 2.28, which is much lower than
our AC-based compressors. Similarly, creating 16-bit tokens from the output of Arithmetic Coding
does not change the bit compression ratio—the total number of bits is unchanged—but it does reduce
the number of tokens in the sequence, and thus the number of tokens the LLM must process. We
compute compression ratios over the C4 dev set, which is unseen during M1 training.

9

Table 2: Weakening the “model” or “coding” component of Arithmetic Coding reduces the compres-
sion rate. The reduction of M1 to a static unigram distribution results in the worst compression ratio.
When using EqualInfoAC, M1 is weaker, as it has less context, and coding is weaker, as padding is
often required at the end of windows. The compression ratio improves with larger window sizes.

Method Compression Ratio
AC[v=256] 5.49
StaticAC[v=256] 1.73
EqualInfoAC[b=16, v=256] 2.66
EqualInfoAC[b=32, v=256] 3.49
EqualInfoAC[b=64, v=256] 4.16
EqualInfoAC[b=128, v=256] 4.61

To highlight the differences between the tokenization methods above, we measure the performance
(as bits/byte on a sample of the C4 validation set) of two trivial models for each tokenizer in Table 3.
The “uniform” model naïvely assigns equal probability to each token, regardless of context. The
“unigram” model also ignores context, but assigns probabilities based on the global token frequencies
observed in the training data. With byte-level tokenization, each UTF-8 byte encodes to a single 8-bit
token, so the uniform model achieves 8 bits/byte. For more powerful tokenizers, the uniform model
is stronger, indicating that the tokenizer itself has some language modeling ability. We observe that
our compression-based tokenizers (AC, EqualInfoAC and GZip) output a near-uniform distribution
of tokens across their vocabulary. This is reflected in the near-zero gain over “uniform” achieved by
modeling unigram statistics.

Table 3: Bits/byte (↓) performance of two trivial models across tokenizers. “Uniform” assigns equal
probability to each token. “Unigram” assigns probabilities based on the empirical token frequencies.
As the compression-based tokenizers output near-uniform distributions over tokens, there is little gain
in modeling unigram statistics. Thus, learning over this data requires modeling longer contexts.

Method
Uniform
bits/byte

Unigram
bits/byte ∆

Bytes 8.000 4.602 3.398
SentencePiece 3.497 2.443 1.054
AC[v=256] 1.457 1.457 0.000
StaticAC[v=256] 4.624 4.624 0.000
EqualInfoAC[b=16, v=256] 3.008 2.976 0.032
EqualInfoAC[b=32, v=256] 2.292 2.285 0.007
EqualInfoAC[b=64, v=256] 1.923 1.921 0.002
EqualInfoAC[b=128, v=256] 1.735 1.735 0.000
GZip[v=256] 3.587 3.586 0.001

3.5 Training M2 on Compressed Data

Each M2 model is trained for 200,000 steps with a batch size of 256 and a sequence length of
512. Thus each model trains on 26.2 billion tokens. Of these, the vast majority (over 98.9%) are
non-padding tokens; see Appendix C for details and Table 13 for the exact size of each dataset. As
methods with higher compression ratios cover more raw text per token, we also include the total
number of bytes in each dataset. Shuffling of training sets is seeded, and dataset state is checkpointed
during training, so each training run results in the model seeing each example exactly once.

Models are trained at four sizes, as shown in Table 4, with 25m, 113m, 403m, and 2b parameters,
excluding embedding parameters. When the compressed bitstream is chunked into 8-bit tokens, the
M2 model has a vocabulary size of 256. With 16-bit tokens the vocabulary increases to 65,536. All
M2 models have a sequence length of 512 tokens. Thus, when training on 16-bit tokens, twice as
many bytes are seen per example and in training overall, as compared to 8-bit tokens. All other
hyperparameters match those used in M1.

10

Table 4: Model sizes used in our experiments, and corresponding hyperparameter settings. Note,
model parameter counts exclude embedding table parameters.

Parameter Count Embedding Dim #Heads #Layers Head Dim MLP Dim
3m 256 4 3 64 1024
25m 512 8 6 64 2048
113m 768 12 12 64 3072
403m 1024 16 24 64 4096
2b 2048 32 24 64 8192

3.6 Baselines

We compare our M2 models against baseline models trained with two standard tokenization methods,
described below. All hyperparameters, including sequence length (512), match those used for our M2
training above.

Bytes These baselines train directly over UTF-8 bytes, using the byte tokenizer from ByT5 [74].
The models see 26.2 billion bytes total (see Table 13).

SentencePiece These baselines train on text tokenized with the SentencePiece vocabulary of 32,000
tokens from T5 [52]. The models see 112 billion bytes total (see Table 13).

3.7 Numerical Stability

Arithmetic Coding depends on the creation of “intervals” that cover each symbol in the vocabulary
based on the quantized cumulative distribution of a model’s logits when predicting the next token.
As such, a small change in the logits due to numerical noise can result in vastly different output
bitstreams. This can make the practical use of neural language models in compression difficult.
Common sources of noise include changes in batch size, parallel computation, changes to compute
infrastructure (CPU vs. GPU vs. TPU, different TPU topology, etc.), changes to inference (computing
the logits for the whole sequence at once vs. computing logits for a single token at a time using KV
caches), and changes to the longest sequence length in the batch.

Methods like the rank-sorted algorithm used in LLMZip [63] may help alleviate these issues as
only the order of tokens needs to match between settings. The development of alternate methods of
LLM-based compression should keep numerical stability issues in mind and ideally alleviate these
issues in the design of the algorithm. Increasing the level of quantization could also help reduce
numerical noise issues, as differences would mostly be lost in quantization, but this would have a
negative impact on the compression ratio.

3.8 Evaluation

As the tokenization scheme varies across the approaches we consider, models cannot be di-
rectly compared on “per-token” metrics such as negative log likelihood loss ℓ. Rather, fol-
lowing previous work [14, 2, 10, 24, et alia], we report perplexity in terms of “bits-per-byte”,
[bits/byte] = (LoT /LiT)ℓ/ ln(2), which scales the model’s loss by the token-level compression rate.

We also compare models on how much computation (FLOPs) is required to perform inference over
a given length of raw text (bytes). More specifically, we calculate M2’s expected FLOPs/byte by
scaling FLOPs/token—approximated by 2 × params (excluding embedding parameters) following
[35]—by the token-level compression rate (as tokens/byte). For methods using an M1 model during
compression, the FLOPs/byte cost of M1 is added.10 For more details on the evaluation metrics see
Appendix G.

We evaluate models on a sample of the C4 validation set. During evaluation, the model is run over
20 batches or ~2.6 million tokens. These tokens represent different amounts of text based on the

10While there is a computational cost to running GZip over the input text, we ignore it as it is insubstantial
compared to the cost of running M2 model inference.

11

107 108 109

Inference FLOPs/byte

1

5

10

bi
ts

/b
yt

e

Bytes
ArithmeticCoding[v=256]
StaticAC[v=256]
EqualInfoAC[b=16, v=256]
GZip[v=256]

SentencePiece
ArithmeticCoding[v=65k]
StaticAC[v=65k]
EqualInfoAC[b=16, v=65k]
GZip[v=65k]

Figure 3: Models trained over compressed text are compared against baseline models in terms
of bits/byte (↓) and inference FLOPs/bytes (↓). The ArithmeticCoding and StaticAC settings are
essentially unlearnable, with models failing to outperform naïve baselines (dashed lines) that as-
sign equal probability to all tokens. EqualInfoAC and GZip outperform naïve baselines and show
improvement with scale. EqualInfoAC is the strongest of the compression-based methods, with
EqualInfoAC[b=16, v=65k] outperforming the Bytes baseline at all sizes. While SentencePiece
performs the best, the gap between EqualInfoAC and SentencePiece narrows with scale. See Ap-
pendix A for the exact values used in this and other graphs.

compression method, making it impractical to run evaluation on the same sequence of bytes for all
methods. To confirm that our validation samples are large enough to be representative, for each
method, we train five 25m parameter models with different seeds. We find the final performance to
be extremely stable, with the largest standard deviation in bits/byte being 0.0061. Thus, the variance
introduced from sampling the validation set is negligible. See Appendix B for more information
about variance.

4 Results

Simple methods of training over neural-compressed text fail As seen in Fig. 3, the most obvious
approach—compression using Arithmetic Coding with M1 assigning next-token probabilities—fails
to learn anything. Regardless of scale, the model only learns to output a uniform distribution over
tokens, the performance of which is denoted by the dashed line. As the Arithmetic Coding procedure
is near optimal [45], the compression ratio is essentially determined by the loss of M1. Thus, even
though the M2 model learns nothing useful, when scaled by the compression rate, this setting ends
up with the same performance as the M1 model. Similarly, models trained over data compressed with
StaticAC—where M1 is replaced with a static unigram model—fail to learn. This result suggests that
the difficultly in learning stems from the complexity or brittleness of the Arithmetic Coding process
itself, rather than from M2’s inability to model M1. Note that the weak “modeling” component of this
compression scheme results in a much lower compression rate and thus worse bits/byte performance,
despite the model also learning a uniform distribution.

SentencePiece is a strong baseline Our SentencePiece baseline outperforms all other methods,
including our Bytes baseline, across all model sizes. On the surface, this result seems to run counter

12

1 2 4 8
bytes/step

1

2

4

bi
ts

/b
yt

e

Bytes
SentencePiece
ArithmeticCoding[v=256]
StaticAC[v=256]
EqualInfoAC[b=16, v=256]
GZip[v=256]
ArithmeticCoding[v=65k]
StaticAC[v=65k]
EqualInfoAC[b=16, v=65k]
GZip[v=65k]

Figure 4: Comparing models in terms of bits/byte (↓) and bytes/step (↑). As decoder steps can be a
practical bottleneck for system latency, a model with higher FLOPs/byte or worse bits/byte may be
preferred in order to achieve shorter sequence lengths. The dashed line () is an example Pareto
frontier, showing how a practitioner might value the trade-off between bits/byte and bytes/step. Our 2
billion parameter EqualInfoAC[b=16, v=65k] model is on this frontier.

to the recent findings of [16], where their byte-level models outperformed subword (BPE) models at
medium and large scales. The discrepancy is due to prioritizing different metrics. They report the
model’s bit compression rate on fixed-length (2,048 byte) sequences. While this is one type of “fair”
comparison, it disadvantages subword models, as they are trained to model dependencies longer than
2,048 bytes (but never evaluated on this ability), and are allotted fewer inference FLOPs to process
the same text, as compared to the byte-level models. Additionally, bit compression ratio penalizes
subword models for having larger vocabulary sizes. By contrast, our evaluation tests what perplexity
models achieve on sequences of the same length they were trained on, and compares models at
matching FLOPs/byte cost. This aligns with our end goal, which is to train an LLM that achieves
the best perplexity at whatever sequence length it can handle, given a fixed budget for training and
inference.

Equal-Info Windows make AC learnable Fig. 3 shows that EqualInfoAC[b=16, v=256] outper-
forms the byte-level baseline at most model sizes, with the gains increasing with scale. In addition
to better bits/byte performance, training over compressed data has the advantage of using fewer
FLOPs/byte for a given model size—seen in the leftward shift of the EqualInfoAC[b=16, v=256]
curve compared to the Bytes curve—due to shorter sequence lengths.

Using 16-bit tokens (65k vocabulary) increases performance further. EqualInfoAC[b=16, v=65k]
outperforms the Bytes baseline at all model sizes. It underperforms the SentencePiece baseline, but
the gap diminishes with scale.

However, EqualInfoAC[b=16, v=65k] outperforms the SentencePiece baseline in terms of to-
kens/byte. Models using EqualInfoAC[b=16, v=65k] take fewer autoregressive steps to generate the
same text than models using SentencePiece encoding. This has the potential to reduce generation
latency, at the cost of reduced compute efficiency. This is a tradeoff that is often worth making in
production. For instance, speculative decoding [42] is a popular approach that performs redundant
computation in order to potentially accelerate auto-regressive steps.

It is noteworthy that the EqualInfoAC M2 models learn well despite being trained on data that has
nearly uniform unigram statistics, as we saw in Table 3. In the best case, our 2 billion parameter
M2 model achieves 0.94 bits/byte. This is a large gain over the naïve uniform (3.01 bits/byte)

13

108 109

Inference FLOPs/byte

1

1.5

2

bi
ts

/b
yt

e

EqualInfoAC[b=16, v=256]
EqualInfoAC[b=32, v=256]
EqualInfoAC[b=64, v=256]
EqualInfoAC[b=128, v=256]

(a) Controlling for Compression Ratio

108 109

Inference FLOPs/token

3

4

5

6

7

8

bi
ts

/to
ke

n

(b) Ignoring Compression Ratio

Figure 5: Performance of EqualInfoAC across various window sizes, b∈ {16, 32, 64, 128}. When
evaluating bits/byte (left) to control for compression ratio, we see an unintuitive trend where for most
model sizes b = 16 is best but b = 128 is second-best. This is due to the higher compression rate
achieved by longer Equal Info Windows. When evaluating tokens/byte (right), a monotonic trend
emerges, showing that shorter windows are easier to learn.

and empirical unigram (2.98 bits/byte) models from Table 3, and approaches the performance of a
parameter-matched SentencePiece model (0.87 bits/byte), despite using 23% fewer FLOPs/byte.

It is apparent from Fig. 3 that if FLOPs/byte were held constant, SentencePiece would achieve slightly
better bits/byte than EqualInfoAC. However there is another axis along which EqualInfoAC may
still be preferred. Setting aside inference FLOPs, all our SentencePiece models require 23% longer
sequences to encode the same text when compared to our best EqualInfoAC setting (b=16, v=65k).
This means that regardless of FLOPs used, the SentencePiece models will take more decoder steps
at inference time. It is up to the practitioner whether it is “worth it” to trade off some bits/byte
performance in order to achieve shorter sequences. In many serving scenarios, decoder steps are a
practical bottleneck for determining system latency, and there are cases where one may be willing to
incur extra inference cost to reduce latency (e.g., speculative decoding [43]). To this end, it may be
advantageous to scale up an EqualInfoAC[b=16, v=65k] model to recover bits/byte performance
while retaining the reduced latency. This can be seen visually in Fig. 4.

GZip is not competitive Training over GZip-compressed text is relatively ineffective. M2’s
performance when trained over GZip highlights a counter-intuitive trend. While the GZip M2 models
actually learn, it would still be preferable to train over AC-compressed text—even though those
models do not learn. This is due to the weak compression offered by GZip. The poor compression
rate, coupled with weak learning, means that the GZip M2 models’ bits/byte performance lags behind
even the 3m parameter M1 model.

Short windows are the best We see a similar effect in Fig. 5, which ablates the EqualInfoAC
window size. In terms of bits/byte, the shortest 16-bit windows perform the best. However, the
next-best setting is the longest 128-bit windows, despite the fact that these M2 models fail to learn
almost anything beyond the uniform distribution. This unintuitive trend stems from the fact that longer
windows translate to better compression rates (see Table 2). If we remove the effect of compression
rate by looking at bits-per-token (Fig. 5b), we see a clearer monotonic trend—increasing window
length makes it harder to learn, as we move closer to simply running Arithmetic Coding over the
whole sequence. For 64 and 128-bit windows, performance improvements with scale are small, but
present; see Table 10 for exact numbers.

Larger M2 vocabulary is helpful Tokenizing compressed text using a larger 16-bit vocabulary
(v=65k) results in a 2× higher token compression rate, seen in the leftward shift of each curve

14

107 108 109

Inference FLOPs/byte

1

2

3

bi
ts

/b
yt

e

EqualInfoAC[b=16, v=256]
EqualInfoAC[b=32, v=256]
GZip[v=256]
EqualInfoAC[b=16, v=65k]
EqualInfoAC[b=32, v=65k]
GZip[v=65k]

Figure 6: Using a larger vocabulary for Arithmetic Coding derived methods improves both perplexity
(lower bits/byte) as well as token compression rate (lower FLOPs/byte). Among settings where the
M2 model actually learns, training over GZip-compressed data is the only case where increasing
vocabulary size to 65k does not help performance.

in Fig. 6.11 For Arithmetic Coding methods, larger vocabulary also improves bits/byte, seen as a
downward shift in the curves. However, for GZip, we see the opposite trend. Arithmetic Coding and
GZip differ the most in their coding component, which suggests that the reason for this difference
could lie there. Note that the header and footer present in GZip-compressed data do not explain this
difference, see Appendix E. For EqualInfoAC[b=16], moving from v=256 to v=65k results in each
window corresponding to a single token, which increases the “stability” of the token→ text mapping.
This could be one reason for the performance gain; see Section 6.1 for more discussion of “stability”.

Emergence with scale is unlikely Given the recent findings of [55], we anticipate that continuing
to scale models beyond 2 billion parameters is unlikely to deliver an “emergent” ability to learn over
AC-compressed text, since the bits/byte metric we use is smooth.

Results persist under “scaling laws” paradigm When scaling models, [30] recommend that
training tokens should be scaled linearly with model size. However, in our experiments above, all
models see the same number of tokens, regardless of model size. Consequently, our largest models
may be somewhat “undertrained”.12 To test whether following the “scaling laws” recommendation
influences our results, we reevaluate our models at earlier checkpoints selected to maintain a constant
ratio of training data to model size. We find that all core trends are unchanged in this setting. See
Appendix D for details.

5 Additional Experiments

At this point, we have established that while the simplest approaches to training over compressed text
fail, there are alternate compression schemes that are learnable. In this section, we conduct additional
experiments to shed light on which aspects of different compression methods are difficult to learn
and what contributes to their learnability.

11The same trend holds for larger 64 and 128-bit windows, but the performance increase with scale is so slight
that we omit them from the graph. See Table 10 for the exact values.

12The undertraining of our 2b models is also visible in their validation loss curves, which still have a significant
decreasing slope at 200,000 steps, showing the models have not yet converged.

15

5.1 Bitstream tokenization is not the main source of difficulty

The compression algorithms we consider output a bitstream, which we later chunk into tokens of a
fixed bit depth (e.g., 8-bit tokens). As such, it is common for the bits representing a single character
or UTF-8 byte to be split across multiple tokens. Compounding this issue is that the value of these
tokens are contextually determined and may differ depending on the surrounding bytes.

The fact that both 8-bit and 16-bit token chunking strategies work suggests that this is not too much of
an issue for the model. To further investigate this, we train two models—one 25m and one 403m—on
the raw bitstream output by Arithmetic Compression, i.e., each token is either a 1 or a 0 and the
vocabulary has a size of 2. We use the same hyperparameters as in Section 3. Working at the bit level
means that the output sequence is now longer than the input sequence, which was UTF-8 bytes. As
such, this setting is not practical in the real world.

When trained to convergence, the two models have cross entropy losses of 0.693 for the 25m
parameter model and 0.6928 for the 403m model—not meaningfully better than the naïve uniform
distribution, which yields a loss of 0.693. This failure mode is the same as in Fig. 3, which suggests
that AC encoding itself is the main source of difficulty, as opposed to any issue around tokenization
or vocabulary size.

5.2 Transformers struggle to learn Arithmetic Coding

Arithmetic Coding is a sequential algorithm that involves tracking multiple state variables as the input
(byte) sequence is consumed. Each token in the output sequence represents multiple transformations
of these variables, e.g., 8 transformations when using 8-bit token chunking. Theoretically, only 10
transformer layers are needed to have a computational path through the model layers that can process
a sequence of 1,024 tokens as a chain, where each token conditions on the previous one. While most
of our transformers have the capacity to model these sequences—only our 25m model has fewer
layers—we see in practice that the Arithmetic Coding algorithm is still difficult to learn.

Table 5: Transformers struggle to learn Arithmetic Coding. In the sequence-to-sequence setting,
a model that learns AC compression/decompression should have an accuracy of 100. Our models
perform much worse. When tasked with decompression in a sequence-to-sequence format, our
transformer’s improvement over pure language modeling of the targets was not statistically significant
(p = 0.07). Thus, the model is not able to leverage the compressed input. Similarly, AC compression
is only learned to 1.7% accuracy.

Task Accuracy Cross Entropy
Decompression 76.98 0.751± 0.005
Byte Level LM 76.86 0.755± 0.001

Compression 1.7 2.489

To directly diagnose the ability to track Arithmetic Coding, we format AC compression and de-
compression as sequence-to-sequence tasks. The input provides the model with the true text, so
we expect a model that is able to learn Arithmetic Coding should achieve an accuracy of 100. We
compress sequences of 1,024 bytes using M1 and Arithmetic Coding.13 We concatenate the bytes
and AC output tokens to create the compression task. For the decompression task, we simply flip the
order—AC output tokens first and then bytes. The target tokens (bytes or tokens) are shifted by the
input vocabulary size, ensuring that they have distinct values. We use a decoder-only transformer as
our model with a causal attention mask, i.e., even during the input sequence, future tokens are hidden
from the model. We train models with 113m parameters. Loss, gradients, and evaluation metrics are
only computed on the target tokens.

In the decompression task, the target tokens are bytes. By ignoring the inputs and just modeling
the outputs, the decompression model can achieve decent performance without actually leveraging
the input data. To control for this, we also train a byte-level language model baseline on the same
sequence-to-sequence data, excluding the input tokens. If the decompression model is actually

13We use shorter raw text sequences to keep the final sequence length of inputs + targets manageable.

16

learning to decompress Arithmetic Coding, we would expect stronger performance than the byte-level
baseline. As we see in Table 5, the baseline model, which does not see the input tokens, has the same
performance as the decompression model.14 Clearly, the models trained for decompression are not
actually learning to do decompression.

The model trained for compression actually shows some signs of learning. Training a language model
directly on the compressed output results in the model learning a uniform distribution over tokens,
see Fig. 3. When the model is able to attend to the input text, we see that the performance in Table 5
is better than the uniform distribution (which would have a cross entropy loss of 5.545). While this
method shows some hope for the learnability of Arithmetic Coding, the need to include the input
sequence negates the main advantage of compression, i.e., applying the model to a shorter sequence.
Additionally, the compressor’s performance is far from the 100 it should be able to achieve.

We also find training on these sequence-to-sequence datasets to be less stable than training on the
language modeling datasets. In our experiments, large performance swings and divergence were
relatively common.

5.3 Larger vocabulary helps beyond increasing the compression ratio

Our best results training over compressed text use EqualInfoAC with 16-bit windows and vocabulary
size at either 65k (best) or 256 (second-best). One clear advantage of the v=65k model is that it has a
2× better token compression rate, so sees twice as much raw text during training. To assess whether
its performance gain is due entirely to this advantage, we train a 25m parameter M2 model over the
same dataset, but reduce its sequence length from 512→ 256. This model trains on half as many
tokens, but sees the same amount of underlying text as the v=256 model.15

Table 6 shows that even in this setting, the model with larger vocabulary is stronger.16 In fact, most
of the bits/byte gain (84% absolute) is due to the structural change in tokenization, as opposed to
the additional text seen. One possible explanation for its strong performance is that the v=65k
model uses exactly one token to represent each equal-info window. We’ll see in the next section
that in EqualInfoAC settings with multiple tokens per window, any non-initial tokens are highly
context-dependent, and learning proceeds on a curriculum from the “easy” window-initial tokens to
the “harder” window-final tokens.

Table 6: Most of the gain of increasing vocabulary from 256 to 65k remains even in the “byte matched”
setting, where the models train over the same number of raw bytes. Performance gains seen between
settings are all statistically significant.

Tokenization Comparison Bits/Byte
EqualInfoAC[b=16, v=256] 1.472± 0.004
EqualInfoAC[b=16, v=65k] byte matched 1.287± 0.003
EqualInfoAC[b=16, v=65k] token matched 1.251± 0.003

6 Analysis

In this section we examine how neural compression based tokenizers differ from standard tokenizers,
and conduct additional analysis on training dynamics and learnability of compressed data. This
analysis leads us to several recommendations for future work developing new compression schemes
that aim to be learnable by transformer models while delivering stronger compression than subword
tokenizers.

14The slight gain is statistically insignificant, (p = 0.07).
15To compensate for the smaller number of tokens in a sample of 20 batches from validation set when each

example is 256 tokens, we compute our evaluation metrics over 40 batches.
16It may be possible to achieve further gains by increasing the token bit depth further. However, most deep

learning frameworks do not support using unsigned data types for inputs, and the resulting large vocabulary size
can cause a computational bottleneck in the final softmax layer.

17

6.1 EqualInfoAC is less stable and less semantic than SentencePiece

Table 7: Comparing tokenization under SentencePiece vs. EqualInfoAC. SentencePiece gives a
fairly stable text→ token mapping. For instance, each occurrence of “elephants” maps to the same
two-token sequence: [elephant] [s]. By contrast, EqualInfoAC[b=16, v=65k] is less stable and
less semantic. Each occurrence of “elephants” maps to different tokens, and most tokens fail to
align with meaningful linguistic boundaries (e.g., word or morpheme).

Input Text The three currently living species are: African savanna
elephants, African forest elephants, and the Asian
elephants.

SentencePiece
Tokens

[The] [three] [currently] [living] [species] [are]
[:] [African] [] [s] [a] [v] [anna] [elephant] [s]
[,] [African] [forest] [elephant] [s] [,] [and] [the]
[Asian] [elephant] [s] [.]

EqualInfoAC
[b=16, v=65k]
Tokens

[The th] [ree c] [urrently l] [iving] [species] [are]
[: A] [frica] [n sav] [anna] [ele] [pha] [nts,] [Afr]
[ican] [forest] [eleph] [ants,] [and the] [Asi] [an e]
[lep] [hant] [s.]

While the performance of our EqualInfoAC[b=16, v=65k] model approaches that of our Sentence-
Piece baseline, qualitative analysis shows that the two tokenization schemes differ in many regards.
Table 7 illustrates some of these differences.

First, we observe that SentencePiece produces a relatively stable text→ token mapping.17 For
example, “elephants” appears three times in the sentence, and maps stably to the same two-token
sequence in all cases: [elephant] [s]. Similarly, both occurrences of “African” map to the
same token: [African]. By comparison, the EqualInfoAC tokenization is relatively unstable, with
each occurrence of these words being segmented in a different way and yielding a different token
sequence.

Second, we find that the SentencePiece tokenization is more “semantic”, by which we mean that
the segmentation it induces aligns better with meaningful linguistic units—words and morphemes.
While there are some exceptions, e.g. “savanna” being parsed as [s] [a] [v] [anna], the more
common case is whole words being parsed as single tokens (e.g., currently), or into meaningful
morphemes (e.g., elephant-s). By comparison, EqualInfoAC tokenization appears to almost
entirely disregard word and morpheme boundaries. As one example, we see “Asian elephants.”
parsed as [Asi] [an e] [lep] [hant] [s.].

Despite these differences, there is an important similarity between SentencePiece and
EqualInfoAC[b=16, v=65k]: they are both stable in the token→ text direction. That is, a given token
ID, e.g., token #500, will always map to the same output text. This “transparent decoding” property
likely makes it easier for a downstream model to learn over these tokens.18

When we move to versions of EqualInfoAC that contain multiple tokens per window, such as
EqualInfoAC[b=16, v=256], this transparency is destroyed for all non-initial tokens within a window.
This is illustrated in Table 8. When the same token appears window-initially in different contexts,
we see the window text has a stable prefix—e.g., token #151 always maps to the prefix “le-”.
However, when occurring as the second token within a two-token window, there are no apparent
correspondences between window text.19 As EqualInfoAC window length increases, the proportion
of tokens that are stable decreases. This may explain the observed difficulty of learning over longer
windows. The window text for all instances of these tokens can be seen in Appendix M.

17See Appendix L for some corner cases where this is not the case.
18Padding to reach a specific window size can require extra computation to discern between padding and

characters that compress to all zeros, however we find in Appendix I that it is not an issue for M2 models.
19A repeated text substring that happens to be aligned with a window multiple times is one of the few cases

where the second token will represent the same text.

18

Table 8: Window-initial tokens have stable token→ text mappings, while non-initial tokens have con-
textual meaning and are thus unstable. We tokenize 20 documents with EqualInfoAC[b=16, v=256]
and show the full window text in a random sample of cases where a specific token appears at the first
or second position within the window.

Token
Window
Position Window Text

151 1 [lew] / [lea] / [led] / [len] / [less] / [led] / [les] / [lew]
2 [thoug] / [ust] / [this] / [etti] / [npo] / [thoug] / [un] / [imag]

185 1 [ord a] / [or k] / [ord] / [or f] / [or al] / [or a] / [ore i] / [ora]
2 [ery] / [s may] / [cian] / [onte] / [h de] / [cri] / [opp] / [ides]

[145, 248]

1001000111111000

The_th|ree_c|urrently_l|iving_|species|_are|:_A
|frica|n_sav|anna|_ele|pha|nts,_|Afr|ican_|forest_
|eleph|ants,_|and_the_|Asi|an_e|lep|hant|s.|

[240, 243]

1111000011110011

[216, 68]

1101100001000100... ...

Figure 7: An illustration of the mapping between characters (bottom), bits (middle) and tokens (top)
in the EqualInfoAC[b=16, v=256] setting. Each equal-info window corresponds to 16 bits of AC
output, which are chunked into two 8-bit M2 tokens from a vocabulary of 256. Colors indicate
whether each character contributes to the first token, second token, or both tokens within a window.
We note that window-initial characters are not well compressed, so the initial 8-bit token tends to
only cover one or two characters.

Note that Table 8 examines window→ text, as opposed to token→ text correspondences. This
is because for multi-token windows, the mapping from tokens to text is not well defined. More
specifically, each character maps to a particular subsequence of the compressed bitstream, but these
may not align with token boundaries.20 Fig. 7 illustrates the mapping between characters, bits, and
tokens. We find that many windows contain a character (shown in purple) whose bits are split across
two 8-bit tokens.

Fig. 7 also highlights that window-initial characters are not being well compressed, with the window-
initial token often only covering one or two characters. This is due to our EqualInfoAC procedure
fully resetting M1’s context at every window boundary. With no context, M1 cannot make confident
predictions, leading to more bits being needed to represent the initial character. On the positive side,
this setup guarantees that a window can be decoded in isolation, which should aid learning. However
it is worth exploring in future work whether maintaining some M1 context across windows could
improve the compression ratio without hurting learnability.

6.2 AC decoding is learned step-by-step

As Arithmetic Coding is a sequential (left-to-right) and contextual algorithm, the text represented by
a given token will differ based on the previous token. As such, a model should perform better on a
token if it has a strong understanding of the token before it. When using EqualInfoAC compression,
each window represents an independent Arithmetic Coding document. As we move deeper into the
window, more and more AC decompression must be done to understand the token.

To understand how a token’s position within a window affects learning, we track across train-
ing the average accuracy at each position within the 8-token windows of a 403m parameter

20This can be a source of instability, even in window-initial tokens, see Appendix L.

19

0 20000 40000 60000
Step

0

2

4

6

8

Ac
cu

ra
cy

(a) Accuracy per token position

0 20000 40000 60000
Step

0

2

4

6

8

Ac
cu

ra
cy

 In
cr

ea
se

Token
1
2
3
4
5
6
7
8

(b) Increase over “trivial” accuracy per token position

Figure 8: Earlier tokens within the 8-token window of an EqualInfoAC[b=64, v=256] model are
learned earlier in training. As training progresses, the model “unlocks” the ability to model tokens
deeper and deeper into the window. The plot on the right shows the increase over “trivial” accuracy—
which we define as the maximum accuracy achieved in the first 2,000 steps of training. (Note,
window-final padding makes trivial accuracy higher for later positions.) For tokens #1–3, later tokens
reach higher accuracy (3 > 2 > 1), likely due to the benefit of local context. For tokens #4–8, accuracy
deteriorates, indicating that the model has trouble tracking the AC algorithm for more than ~32 bits.

EqualInfoAC[b=64, v=256] model.21 Fig. 8 shows both raw accuracy (left) as well as the in-
crease over “trivial” accuracy (right), which we define as the maximum accuracy achieved in the first
2,000 steps of training. Looking at accuracy increase highlights the “sequential learning” trend by dis-
counting any part of accuracy that is text independent. In particular, we note that window-final tokens
have a non-uniform distribution due to the use of window-final padding bits (see our EqualInfoAC
formulation in Section 3.3), which can be learned without any understanding of the text.

We observe two interesting trends. First, there is a clear ordering as to when the model starts to
make meaningful (non-trivial) progress on a given position. The initial token (#1) is learned first,
followed fairly quickly by #2 and then #3. Later tokens are only “unlocked” after 10,000 training
steps, suggesting that the ability to model these tokens builds on a foundation of understanding the
preceding tokens within the window.

The second trend concerns the accuracy reached at each position. Here, we observe an increase in
accuracy from #1 < #2 < #3, followed by a decrease from #3 < #4 < #5 and so on.22 We interpret the
increase across the first three positions as due to the benefit of extra leftward context. This is akin to
the initial byte in a word being harder to predict than the following bytes. The decreasing performance
at tokens #4 and beyond suggests the model is unable to track AC decompression indefinitely. While
the model clearly learns to decompress longer sequences as training progresses, reliably decoding
past 32 bits of AC output appears to be a challenge.

6.3 Learnable distributions are less uniform

A well-known result in the compression literature is that there can be no recursive compression [45].
The compression algorithm removes information captured by its model, resulting in a uniform output
that appears random to the original model. However, our setting is not recursive compression. Instead,
a separate and larger model is trained on the compressed output, which should be able to capture new
patterns in the bitstream.

Despite this, the output of compression using M1 appears very uniform, as evidenced by the minimal
gains from modeling the unigram token distribution in Table 3. Therefore, it seems reasonable that
this uniformity could make it hard for M2 to learn (as all patterns must be contextual). We investigate

21The absolute accuracy of the EqualInfoAC[b=64, v=256] model is relatively poor, but its relatively long
window provides the clearest illustration of the positional trends. We observe similar trends for shorter windows
where the model has stronger performance.

22The final token #8 also fits this trend when looking at the increase over non-trivial accuracy. The raw
accuracy in this position is higher than previous tokens #4–7, due to the skewed distribution introduced by
window-final padding.

20

2 4 6 8 10 12 14 16
Bit N-grams

10 11

10 9

10 7

10 5

10 3

10 1

KL
(o

bs
er

ve
d

||
un

ifo
rm

)

RNG
ArithmeticCoding[v=256]
StaticAC[v=256]
GZip[v=256]
EqualInfoAC[b=16]
EqualInfoAC[b=64]

(a) bit n-grams counting all overlapping occurrences

2 4 6 8 10 12 14 16
N-Bit Tokens

10 11

10 9

10 7

10 5

10 3

10 1

KL
(o

bs
er

ve
d

||
un

ifo
rm

)

(b) n-bit tokens following our M2 tokenization

Figure 9: As the bitstream is grouped into larger units, the empirical distribution moves away from
uniform. We plot KL divergence of observed n-gram distributions from the uniform distribution,
across various n-gram sizes. While AC compressed data would be difficult to distinguish from random
data, we find there are still patterns to capture when using other compression schemes, particularly
for GZip and shorter EqualInfoAC windows. Compared to the left plot, we find that the tokenized
bitstream (see Section 3.4) has even more information for M2 to capture.

this by plotting the KL divergence [39] between the observed empirical distribution and a uniform
distribution for different segmentations of the bitstream. If the underlying distribution of bits was
truly random and independent, then the distribution of unigrams for some bitstream segmentation
should remain uniform as p(bi, . . . , bi+n) =

∏i+n
j=i (p(bj)) and therefore the KL divergence should

remain close to zero. On the other hand, if the distribution diverges from uniform, there is contextual
information to be learned when training an LLM to model p(bn|bi, . . . , bi+n−1).

We segment the bitstream either into bit n-grams, where successive n-grams are allowed to overlap,
or into n-bit tokens, following our M2 tokenization procedure—see Section 3.4. We only plot
tokenization into n-bits that are factors of 16, otherwise tokens would cross window boundaries in
the EqualInfoAC[b=16] setting.

As a baseline, we used the cryptographic secrets package in Python to generate bitstreams that
should be truly random and independent. As such, the KL divergence should remain at 0 when
segmented in the same way as the compressed data. The reason this does not hold in Fig. 9 is that the
maximum likelihood estimate of entropy, Ĥ = −

∑
x∈X̂ p̂(x) log2 p̂(x), is negatively biased [48]. In

Fig. 13 we see that when using a Miller-Madow estimator [46] to correct for this bias, the expected
KL of 0 is well within sampling noise bounds. To account for noise in the entropy estimation, we
plot 90th percentile intervals of the KL divergence between the observed entropy from 100 disjoint
samples of the data and the uniform distribution.23

The AC and RNG lines in Fig. 9 are very similar and their sampling noise intervals have large
overlaps. This suggests that the data generated by AC compression with M1 is difficult to distinguish
from random data.24 This is a possible explanation for why M2 models trained on AC data only learn
to output a uniform distribution, as seen in Fig. 3.

In Fig. 9, we see that GZip is the least uniform, which is expected as it has the worst compression
rate among these settings. However, the segmentation into tokens does not result in much extra
information. This is again suggestive that the differences between the “coding” components of GZip

23As the number of bits in a segmentation grow, the vocabulary size increases exponentially, requiring many
more samples. Thus we expect noise in the entropy estimate to grow with n. This holds, but it is obfuscated by
the log scaling in Fig. 9. In fact, the magnitude of the noise for settings such as GZip and EqualInfoAC is larger
than for AC or RNG. This noise behavior is seen in Fig. 12. See Appendix J for more information on entropy
estimation and bias correction.

24For n > 2, the AC entropy is statistically significantly less than the RNG entropy, however, differences in
the mean entropy only start to appear after ~8 decimal places.

21

and Arithmetic Coding are important for learnability. It is also a possible explanation of why GZip is
the one setting where using 16-bit tokens does not improve performance.

Similarly, Fig. 9 shows that EqualInfoAC[b=16] has the most information among the Arithmetic
Coding approaches. Given that this is the most learnable setting, it suggests that non-uniformity of the
bitstream may be important for learning. We also see a large increase when moving to 16-bit tokens,
providing a further possible explanation for why larger vocabulary is helpful (see Section 5.3). Finally,
we note that StaticAC has less information than EqualInfoAC[b=16], suggesting that weakening the
“coding” component of Arithmetic Coding is a more effective way to retain information and increase
learnability for M2.

7 Conclusion

We have shown there is promise in the idea of training LLMs over neural-compressed text. In the
best case, this will allow training over text that is better compressed than standard subword token
sequences, while maintaining learnability. This an appealing prospect, as models that read and write
more text per token are more efficient to train and serve, and can model longer dependencies.

While the “very simplest” approach does not work (training directly over a tokenized AC-encoded
bitstream), we showed that a relatively simple modification—compression via Equal Info Windows—
already brings us within striking distance of popular tokenizers. When measured in terms of perplexity
achievable at fixed inference cost (FLOPs/byte), we find that our method outperforms raw byte-level
models, and comes increasingly close to the performance of SentencePiece tokenization as scale
increases to 2 billion parameters.

While bespoke compression methods have developed around different modalities (e.g., text, audio,
images, video) and different applications (e.g., delta-of-delta for regular repeating timestamps [50]),
to our knowledge, no efficient compression methods have been designed specifically for use as
LLM tokenizers. We are optimistic that future work will create such methods. Compared to today’s
subword tokenizers, we expect these methods (i) will deliver higher compression rates, (ii) will come
closer to equal information per token, thus allocating compute more effectively, and (iii) will give
models a more direct view of the underlying raw text, thus helping on spelling and pronunciation tasks.
As a tradeoff, we expect these neural tokenizers will be somewhat less stable in their text↔ token
mapping, but perhaps not so unstable as our approach here. In particular, we think it is worth
exploring methods under which a given word typically maps to a relatively small number (tens not
thousands) of relatable token sequences.

One direction we left unexplored is the idea of passing information between the compressing model
(M1) and the LLM trained over compressed text (M2). Some additional signal of M1’s internal state
or output may be helpful for M2 to accurately simulate M1, which is a prerequisite to flawlessly
encoding and decoding M1-compressed text.

For hill-climbing in this space, we found it useful to iterate on the sequence-to-sequence sub-
tasks of compression and decompression, which should, in theory, be learnable with high accuracy.
Specifically, if future work can devise a strong (~10×) compressor that a transformer can be trained
to accurately encode and decode, we expect that this will be an ideal candidate for tokenizing text for
LLMs.

Acknowledgements

We would like to thank Ben Adlam, Grégoire Delétang, Rosanne Liu, and Colin Raffel for detailed
comments on an earlier draft. We’re also grateful to Peter Liu, both for helpful discussion, as well as
for building some of the infrastructure that made our experiments easier to run. Finally, we thank
Doug Eck, Noah Fiedel, and the PAGI team for ongoing guidance and feedback.

Bibliography

[1] J. Ainslie, S. Ontanon, C. Alberti, V. Cvicek, Z. Fisher, P. Pham, A. Ravula, S. Sanghai,
Q. Wang, and L. Yang. ETC: Encoding Long and Structured Inputs in Transformers. In
B. Webber, T. Cohn, Y. He, and Y. Liu, editors, Proceedings of the 2020 Conference on

22

https://aclanthology.org/2020.emnlp-main.19

Empirical Methods in Natural Language Processing (EMNLP), pages 268–284, Online, Nov.
2020. Association for Computational Linguistics.

[2] R. Al-Rfou, D. Choe, N. Constant, M. Guo, and L. Jones. Character-Level Language Modeling
with Deeper Self-Attention. Proceedings of the AAAI Conference on Artificial Intelligence,
33(01):3159–3166, Jul. 2019.

[3] A. Baevski, H. Zhou, A. Mohamed, and M. Auli. wav2vec 2.0: A Framework for Self-
Supervised Learning of Speech Representations. In Proceedings of the 34th International
Conference on Neural Information Processing Systems, NeurIPS’20, Red Hook, NY, USA,
2020. Curran Associates Inc.

[4] J. Ballé, S. J. Hwang, and E. Agustsson. TensorFlow Compression: Learned Data Compression,
2024.

[5] I. Beltagy, M. E. Peters, and A. Cohan. Longformer: The Long-Document Transformer, Dec.
2020.

[6] Z. Borsos, R. Marinier, D. Vincent, E. Kharitonov, O. Pietquin, M. Sharifi, D. Roblek, O. Teboul,
D. Grangier, M. Tagliasacchi, and N. Zeghidour. AudioLM: A Language Modeling Approach
to Audio Generation. IEEE/ACM Transactions on Audio, Speech, and Language Processing,
31:2523–2533, 2023.

[7] J. Bradbury, R. Frostig, P. Hawkins, M. J. Johnson, C. Leary, D. Maclaurin, G. Necula, A. Paszke,
J. VanderPlas, S. Wanderman-Milne, and Q. Zhang. JAX: composable transformations of
Python+NumPy programs, 2018.

[8] P. F. Brown, V. J. D. Pietra, S. A. D. Pietra, and R. L. Mercer. The Mathematics of Statistical
Machine Translation: Parameter Estimation. Comput. Linguist., 19(2):263–311, jun 1993.

[9] R. Child, S. Gray, A. Radford, and I. Sutskever. Generating Long Sequences with Sparse
Transformers, Apr. 2019.

[10] D. Choe, R. Al-Rfou, M. Guo, H. Lee, and N. Constant. Bridging the Gap for Tokenizer-Free
Language Models. CoRR, abs/1908.10322, 2019.

[11] J. Chung, S. Ahn, and Y. Bengio. Hierarchical Multiscale Recurrent Neural Networks. In
International Conference on Learning Representations, 2017.

[12] Y.-A. Chung, Y. Zhang, W. Han, C.-C. Chiu, J. Qin, R. Pang, and Y. Wu. w2v-BERT: Combining
Contrastive Learning and Masked Language Modeling for Self-Supervised Speech Pre-Training.
In 2021 IEEE Automatic Speech Recognition and Understanding Workshop (ASRU), pages
244–250, 2021.

[13] J. H. Clark, D. Garrette, I. Turc, and J. Wieting. Canine: Pre-training an Efficient Tokenization-
Free Encoder for Language Representation. Transactions of the Association for Computational
Linguistics, 10:73–91, 2022.

[14] Z. Dai, Z. Yang, Y. Yang, J. Carbonell, Q. Le, and R. Salakhutdinov. Transformer-XL: Attentive
Language Models beyond a Fixed-Length Context. In Proceedings of the 57th Annual Meeting
of the Association for Computational Linguistics, pages 2978–2988, Florence, Italy, July 2019.
Association for Computational Linguistics.

[15] S. DeDeo, R. X. D. Hawkins, S. Klingenstein, and T. Hitchcock. Bootstrap Methods for the
Empirical Study of Decision-Making and Information Flows in Social Systems. Entropy. An
International and Interdisciplinary Journal of Entropy and Information Studies, 15(6):2246–
2276, 2013.

[16] G. Delétang, A. Ruoss, P.-A. Duquenne, E. Catt, T. Genewein, C. Mattern, J. Grau-Moya,
L. K. Wenliang, M. Aitchison, L. Orseau, M. Hutter, and J. Veness. Language Modeling Is
Compression. In ICLR, 2024.

[17] P. Deutsch. GZIP file format specification. RFC 1952, May 1996.

23

https://ojs.aaai.org/index.php/AAAI/article/view/4182
https://ojs.aaai.org/index.php/AAAI/article/view/4182
https://proceedings.neurips.cc/paper/2020/file/92d1e1eb1cd6f9fba3227870bb6d7f07-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/92d1e1eb1cd6f9fba3227870bb6d7f07-Paper.pdf
http://github.com/tensorflow/compression
http://arxiv.org/abs/2004.05150
https://arxiv.org/abs/2209.03143
https://arxiv.org/abs/2209.03143
http://github.com/google/jax
http://github.com/google/jax
https://aclanthology.org/J93-2003/
https://aclanthology.org/J93-2003/
http://arxiv.org/abs/1904.10509
http://arxiv.org/abs/1904.10509
http://arxiv.org/abs/1908.10322
http://arxiv.org/abs/1908.10322
https://openreview.net/forum?id=S1di0sfgl
https://arxiv.org/abs/2108.06209
https://arxiv.org/abs/2108.06209
https://aclanthology.org/2022.tacl-1.5
https://aclanthology.org/2022.tacl-1.5
https://aclanthology.org/P19-1285
https://aclanthology.org/P19-1285
https://www.mdpi.com/1099-4300/15/6/2246
https://www.mdpi.com/1099-4300/15/6/2246
https://arxiv.org/abs/2309.10668
https://arxiv.org/abs/2309.10668
https://www.rfc-editor.org/rfc/rfc1952.txt

[18] P. Deutsch and J.-L. Gailly. ZLIB Compressed Data Format Specification. RFC 1950, May
1996.

[19] J. Duda. Asymmetric Numeral Systems: Entropy Coding Combining Speed of Huffman Coding
with Compression Rate of Arithmetic Coding, Jan. 2014.

[20] B. Efron. Bootstrap Methods: Another Look at the Jackknife. The Annals of Statistics, 7(1):1–26,
1979.

[21] J. H. Friedman. Greedy Function Approximation: A Gradient Boosting Machine. The Annals
of Statistics, 29(5):1189–1232, 2001.

[22] K. Fukushima. Cognitron: A Self-Organizing Multilayered Neural Network. Biological
Cybernetics, 20:121–136, 1975.

[23] P. Gage. A New Algorithm for Data Compression. C Users Journal, 12(2):23–38, 1994.

[24] L. Gao, S. Biderman, S. Black, L. Golding, T. Hoppe, C. Foster, J. Phang, H. He, A. Thite,
N. Nabeshima, S. Presser, and C. Leahy. The Pile: An 800GB Dataset of Diverse Text for
Language Modeling, Dec. 2020.

[25] N. Godey, R. Castagné, É. de la Clergerie, and B. Sagot. MANTa: Efficient Gradient-Based
Tokenization for End-to-End Robust Language Modeling. In Findings of the Association for
Computational Linguistics: EMNLP 2022, pages 2859–2870, Abu Dhabi, United Arab Emirates,
Dec. 2022. Association for Computational Linguistics.

[26] O. Goldman, A. Caciularu, M. Eyal, K. Cao, I. Szpektor, and R. Tsarfaty. Unpacking Tok-
enization: Evaluating Text Compression and its Correlation with Model Performance, Mar.
2024.

[27] A. Graves. Adaptive Computation Time for Recurrent Neural Networks, Feb. 2017.

[28] J. Heek, A. Levskaya, A. Oliver, M. Ritter, B. Rondepierre, A. Steiner, and M. van Zee. Flax: A
neural network library and ecosystem for JAX, 2020.

[29] G. Hinton, O. Vinyals, and J. Dean. Distilling the Knowledge in a Neural Network, Mar. 2015.

[30] J. Hoffmann, S. Borgeaud, A. Mensch, E. Buchatskaya, T. Cai, E. Rutherford, D. de las Casas,
L. A. Hendricks, J. Welbl, A. Clark, T. Hennigan, E. Noland, K. Millican, G. van den Driessche,
B. Damoc, A. Guy, S. Osindero, K. Simonyan, E. Elsen, O. Vinyals, J. W. Rae, and L. Sifre.
Training Compute-Optimal Large Language Models. In Advances in Neural Information
Processing Systems, 2022.

[31] P. G. Howard and J. S. Vitter. Analysis of Arithmetic Coding for Data Compression. Information
Processing & Management, 28(6):749–763, 1992.

[32] D. A. Huffman. A Method for the Construction of Minimum-Redundancy Codes. Proceedings
of the IRE, 40(9):1098–1101, 1952.

[33] J. D. Hunter. Matplotlib: A 2D Graphics Environment. Computing in Science & Engineering,
9(3):90–95, 2007.

[34] Z. Jiang, M. Y. R. Yang, M. Tsirlin, R. Tang, and J. Lin. Less is More: Parameter-Free Text
Classification with Gzip, Dec. 2022.

[35] J. Kaplan, S. McCandlish, T. Henighan, T. B. Brown, B. Chess, R. Child, S. Gray, A. Radford,
J. Wu, and D. Amodei. Scaling Laws for Neural Language Models, Jan. 2020.

[36] N. Kitaev, L. Kaiser, and A. Levskaya. Reformer: The Efficient Transformer. In International
Conference on Learning Representations, 2020.

[37] T. Kudo. Subword Regularization: Improving Neural Network Translation Models with
Multiple Subword Candidates. In Proceedings of the 56th Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Papers), pages 66–75, Melbourne, Australia,
July 2018. Association for Computational Linguistics.

24

https://www.rfc-editor.org/rfc/rfc1950.txt
http://arxiv.org/abs/1311.2540
http://arxiv.org/abs/1311.2540
http://www.jstor.org/stable/2958830
https://doi.org/10.1214/aos/1013203451
https://link.springer.com/article/10.1007/BF00342633
http://www.pennelynn.com/Documents/CUJ/HTML/94HTML/19940045.HTM
http://arxiv.org/abs/2101.00027
http://arxiv.org/abs/2101.00027
https://aclanthology.org/2022.findings-emnlp.207
https://aclanthology.org/2022.findings-emnlp.207
http://arxiv.org/abs/2403.06265
http://arxiv.org/abs/2403.06265
http://arxiv.org/abs/1603.08983
http://github.com/google/flax
http://github.com/google/flax
http://arxiv.org/abs/1503.02531
https://openreview.net/forum?id=iBBcRUlOAPR
https://www.sciencedirect.com/science/article/pii/0306457392900669
https://ieeexplore.ieee.org/document/4051119
https://ieeexplore.ieee.org/document/4160265
http://arxiv.org/abs/2212.09410
http://arxiv.org/abs/2212.09410
http://arxiv.org/abs/2001.08361
https://openreview.net/forum?id=rkgNKkHtvB
https://aclanthology.org/P18-1007
https://aclanthology.org/P18-1007

[38] T. Kudo and J. Richardson. SentencePiece: A Simple and Language Independent Subword
Tokenizer and Detokenizer for Neural Text Processing. In Proceedings of the 2018 Conference
on Empirical Methods in Natural Language Processing: System Demonstrations, pages 66–71,
Brussels, Belgium, Nov. 2018. Association for Computational Linguistics.

[39] S. Kullback and R. A. Leibler. On Information and Sufficiency. The Annals of Mathematical
Statistics, 22(1):79–86, 1951.

[40] M. O. Külekci. Compressed Context Modeling for Text Compression. In 2011 Data Compres-
sion Conference, pages 373–382, 2011.

[41] B. Lester, J. Yurtsever, S. Shakeri, and N. Constant. Reducing Retraining by Recycling
Parameter-Efficient Prompts. arXiv preprint arXiv:2208.05577, aug 2022.

[42] Y. Leviathan, M. Kalman, and Y. Matias. Fast inference from transformers via speculative
decoding, 2023.

[43] Y. Leviathan, M. Kalman, and Y. Matias. Fast Inference from Transformers via Speculative
Decoding. In Proceedings of the 40th International Conference on Machine Learning, volume
202 of Proceedings of Machine Learning Research, pages 19274–19286. PMLR, 23–29 Jul
2023.

[44] R. Liu, D. Garrette, C. Saharia, W. Chan, A. Roberts, S. Narang, I. Blok, R. Mical, M. Norouzi,
and N. Constant. Character-Aware Models Improve Visual Text Rendering. In Proceedings
of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long
Papers), pages 16270–16297, Toronto, Canada, July 2023. Association for Computational
Linguistics.

[45] M. Mahoney. Data Compression Explained. 2013.

[46] G. Miller. Note on the Bias of Information Estimates. In Information Theory in Psychology:
Problems and Methods, pages 95–100. Free Press, 1955.

[47] V. Nair and G. E. Hinton. Rectified Linear Units Improve Restricted Boltzmann Machines. In
Proceedings of the 27th International Conference on International Conference on Machine
Learning, ICML’10, pages 807–814, Madison, WI, USA, 2010. Omnipress.

[48] L. Paninski. Estimation of Entropy and Mutual Information. Neural Computation, 15(6):1191–
1253, June 2003.

[49] R. Pasco. Source Coding Algorithms for Fast Data Compression (Ph.D. Thesis Abstr.). IEEE
Transactions on Information Theory, 23(4):548–548, 1977.

[50] T. Pelkonen, S. Franklin, J. Teller, P. Cavallaro, Q. Huang, J. Meza, and K. Veeraraghavan. Go-
rilla: a Fast, Scalable, In-Memory Time Series Database. Proc. VLDB Endow., 8(12):1816–1827,
aug 2015.

[51] O. Press, N. Smith, and M. Lewis. Train Short, Test Long: Attention with Linear Biases Enables
Input Length Extrapolation. In International Conference on Learning Representations, 2022.

[52] C. Raffel, N. Shazeer, A. Roberts, K. Lee, S. Narang, M. Matena, Y. Zhou, W. Li, and P. J. Liu.
Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer. Journal of
Machine Learning Research (JMLR 2020), 21(140):1–67, 2020.

[53] J. J. Rissanen. Generalized Kraft Inequality and Arithmetic Coding. IBM Journal of Research
and Development, 20(3):198–203, 1976.

[54] A. Roberts, H. W. Chung, G. Mishra, A. Levskaya, J. Bradbury, D. Andor, S. Narang, B. Lester,
C. Gaffney, A. Mohiuddin, C. Hawthorne, A. Lewkowycz, A. Salcianu, M. van Zee, J. Austin,
S. Goodman, L. B. Soares, H. Hu, S. Tsvyashchenko, A. Chowdhery, J. Bastings, J. Bulian,
X. Garcia, J. Ni, A. Chen, K. Kenealy, K. Han, M. Casbon, J. H. Clark, S. Lee, D. Garrette,
J. Lee-Thorp, C. Raffel, N. Shazeer, M. Ritter, M. Bosma, A. Passos, J. Maitin-Shepard,
N. Fiedel, M. Omernick, B. Saeta, R. Sepassi, A. Spiridonov, J. Newlan, and A. Gesmundo.
Scaling Up Models and Data with t5x and seqio. Journal of Machine Learning Research,
24(377):1–8, 2023.

25

https://aclanthology.org/D18-2012
https://aclanthology.org/D18-2012
https://doi.org/10.1214/aoms/1177729694
https://ieeexplore.ieee.org/document/5749495
https://arxiv.org/abs/2208.05577
https://arxiv.org/abs/2208.05577
https://proceedings.mlr.press/v202/leviathan23a.html
https://proceedings.mlr.press/v202/leviathan23a.html
https://aclanthology.org/2023.acl-long.900
https://mattmahoney.net/dc/dce.html
https://www.scienceopen.com/document?vid=357d299f-62fa-4bda-8dd2-e4d5b5abde5d
https://www.cs.toronto.edu/~fritz/absps/reluICML.pdf
https://doi.org/10.1162/089976603321780272
https://ieeexplore.ieee.org/document/1055739
https://doi.org/10.14778/2824032.2824078
https://doi.org/10.14778/2824032.2824078
https://openreview.net/forum?id=R8sQPpGCv0
https://openreview.net/forum?id=R8sQPpGCv0
https://jmlr.org/papers/v21/20-074.html
https://ieeexplore.ieee.org/document/5391119
http://jmlr.org/papers/v24/23-0795.html

[55] R. Schaeffer, B. Miranda, and S. Koyejo. Are Emergent Abilities of Large Language Models a
Mirage? In Thirty-Seventh Conference on Neural Information Processing Systems, 2023.

[56] R. Sennrich, B. Haddow, and A. Birch. Neural Machine Translation of Rare Words with
Subword Units. In Proceedings of the 54th Annual Meeting of the Association for Computa-
tional Linguistics (Volume 1: Long Papers), pages 1715–1725, Berlin, Germany, Aug. 2016.
Association for Computational Linguistics.

[57] C. E. Shannon. A Mathematical Theory of Communication. The Bell System Technical Journal,
27:379–423, 1948.

[58] P. Shaw, J. Uszkoreit, and A. Vaswani. Self-Attention with Relative Position Representations.
In Proceedings of the 2018 Conference of the North American Chapter of the Association for
Computational Linguistics: Human Language Technologies, Volume 2 (Short Papers), pages
464–468, New Orleans, Louisiana, June 2018. Association for Computational Linguistics.

[59] N. Shazeer and M. Stern. Adafactor: Adaptive Learning Rates with Sublinear Memory Cost.
In Proceedings of the 35th International Conference on Machine Learning, volume 80 of
Proceedings of Machine Learning Research, pages 4596–4604. PMLR, July 2018.

[60] S. Stanton, P. Izmailov, P. Kirichenko, A. Alemi, and A. G. Wilson. Does Knowledge Distillation
Really Work? 2021.

[61] Y. Tay, V. Q. Tran, S. Ruder, J. Gupta, H. W. Chung, D. Bahri, Z. Qin, S. Baumgartner,
C. Yu, and D. Metzler. Charformer: Fast Character Transformers via Gradient-based Subword
Tokenization. In International Conference on Learning Representations, 2022.

[62] D. Tito Svenstrup, J. Hansen, and O. Winther. Hash Embeddings for Efficient Word Representa-
tions. In Advances in Neural Information Processing Systems, volume 30. Curran Associates,
Inc., 2017.

[63] C. S. K. Valmeekam, K. Narayanan, D. Kalathil, J.-F. Chamberland, and S. Shakkottai. LLMZip:
Lossless Text Compression using Large Language Models, June 2023.

[64] A. van den Oord, O. Vinyals, and K. Kavukcuoglu. Neural Discrete Representation Learning.
In Proceedings of the 31st International Conference on Neural Information Processing Systems,
NeurIPS’17, page 6309–6318, Red Hook, NY, USA, 2017. Curran Associates Inc.

[65] G. Van Rossum and F. L. Drake. Python 3 Reference Manual. CreateSpace, Scotts Valley, CA,
2009.

[66] D. Varis and O. Bojar. Sequence Length is a Domain: Length-based Overfitting in Trans-
former Models. In Proceedings of the 2021 Conference on Empirical Methods in Natural
Language Processing, pages 8246–8257, Online and Punta Cana, Dominican Republic, Nov.
2021. Association for Computational Linguistics.

[67] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, Ł. Kaiser, and
I. Polosukhin. Attention Is All You Need. In Advances in Neural Information Processing
Systems 30, pages 5998–6008. Curran Associates, Inc., 2017.

[68] L. Vilnis, Y. Zemlyanskiy, P. Murray, A. T. Passos, and S. Sanghai. Arithmetic Sampling:
Parallel Diverse Decoding for Large Language Models. In Proceedings of the 40th International
Conference on Machine Learning, volume 202 of Proceedings of Machine Learning Research,
pages 35120–35136. PMLR, 23–29 Jul 2023.

[69] P. Virtanen, R. Gommers, T. E. Oliphant, M. Haberland, T. Reddy, D. Cournapeau, E. Burovski,
P. Peterson, W. Weckesser, J. Bright, S. J. van der Walt, M. Brett, J. Wilson, K. J. Millman,
N. Mayorov, A. R. J. Nelson, E. Jones, R. Kern, E. Larson, C. J. Carey, İ. Polat, Y. Feng,
E. W. Moore, J. VanderPlas, D. Laxalde, J. Perktold, R. Cimrman, I. Henriksen, E. A. Quintero,
C. R. Harris, A. M. Archibald, A. H. Ribeiro, F. Pedregosa, P. van Mulbregt, and SciPy 1.0
Contributors. SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature
Methods, 17:261–272, 2020.

26

https://arxiv.org/abs/2304.15004
https://arxiv.org/abs/2304.15004
https://aclanthology.org/P16-1162
https://aclanthology.org/P16-1162
http://plan9.bell-labs.com/cm/ms/what/shannonday/shannon1948.pdf
https://aclanthology.org/N18-2074
https://proceedings.mlr.press/v80/shazeer18a.html
https://arxiv.org/abs/1911.09189
https://arxiv.org/abs/1911.09189
https://openreview.net/forum?id=JtBRnrlOEFN
https://openreview.net/forum?id=JtBRnrlOEFN
https://proceedings.neurips.cc/paper_files/paper/2017/file/f0f6ba4b5e0000340312d33c212c3ae8-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/f0f6ba4b5e0000340312d33c212c3ae8-Paper.pdf
http://arxiv.org/abs/2306.04050
http://arxiv.org/abs/2306.04050
https://proceedings.neurips.cc/paper_files/paper/2017/file/7a98af17e63a0ac09ce2e96d03992fbc-Paper.pdf
https://aclanthology.org/2021.emnlp-main.650
https://aclanthology.org/2021.emnlp-main.650
http://papers.nips.cc/paper/7181-attention-is-all-you-need.pdf
https://proceedings.mlr.press/v202/vilnis23a.html
https://proceedings.mlr.press/v202/vilnis23a.html
https://scipy.org/

[70] S. Wang, B. Z. Li, M. Khabsa, H. Fang, and H. Ma. Linformer: Self-Attention with Linear
Complexity, 2020.

[71] M. L. Waskom. Seaborn: Statistical Data Visualization. Journal of Open Source Software,
6(60):3021, 2021.

[72] B. L. Welch. The Generalization of “Student’s” Problem when Several Different Population
Variances are Involved. Biometrika, 34(1/2):28–35, 1947.

[73] I. H. Witten, R. M. Neal, and J. G. Cleary. Arithmetic Coding for Data Compression. Commu-
nications of The Acm, 30(6):520–540, June 1987.

[74] L. Xue, A. Barua, N. Constant, R. Al-Rfou, S. Narang, M. Kale, A. Roberts, and C. Raffel.
ByT5: Towards a Token-Free Future with Pre-trained Byte-to-Byte Models. Transactions of the
Association for Computational Linguistics, 10:291–306, 2022.

[75] M. Zaheer, G. Guruganesh, K. A. Dubey, J. Ainslie, C. Alberti, S. Ontanon, P. Pham, A. Ravula,
Q. Wang, L. Yang, et al. Big bird: Transformers for longer sequences. Advances in Neural
Information Processing Systems, 33, 2020.

[76] G. K. Zipf. The Psycho-Biology of Language. Houghton Mifflin, 1935.

[77] J. Ziv and A. Lempel. A Universal Algorithm for Sequential Data Compression. IEEE
Transactions on Information Theory, 23(3):337–343, 1977.

[78] A. Zvonkin and L. Levin. The Complexity of Finite Objects and the Development of the
Concepts of Information and Randomness by Means of the Theory of Algorithms. Russian
Mathematical Surveys, 25:83, 10 2007.

A Numerical Values

Table 9 includes the specific values used to create Fig. 3. Similarly, Table 10 includes the values used
to create Fig. 5. The numerical values from Fig. 6 can be found across Table 9 and Table 10. Table 11
includes the numerical values from Fig. 11.

B Variance

Sampling from the validation set was seeded. For a given seed, the same batches are sampled at each
evaluation step within a training run. Similarly, when models of a different size are trained on the
same compressed data, the same evaluation batches are sampled, allowing for fair comparison. As the
Bytes and SentencePiece baselines use deterministic datasets, the validation seed is not used. Instead
the “start_step” is incremented by 20 to get a new sample of 20 batches.

Model initialization and the order of the training data is controlled by the training seed. This seed
was also changed during variance testing. During training, the dataset is checkpointed and therefore
each example is seen exactly once. The exact order of the training data is determined by the seed. As
the Bytes and SentencePiece baselines use deterministic datasets, the training order is fixed.

5 models with 25m parameters were trained with different seeds (both validation and training) for
each compression method and the two baselines. The mean and standard deviation can be found
in Table 12. The variance is so low that we only report single values for most other experimental
settings, such as larger models.

Training models of size 403m and 2b over data compressed with EqualInfoAC[b=64, v=256] and
EqualInfoAC[b=128, v=256], as well as a 2b model with EqualInfoAC[b=128, v=65k], occasion-
ally diverged, collapsing to a simple model that just output the uniform distribution. The numbers for
these settings exclude these divergent runs. This resulted in 7 re-runs in the most problematic case.

27

https://doi.org/10.21105/joss.03021
http://www.jstor.org/stable/2332510
http://www.jstor.org/stable/2332510
https://doi.org/10.1145/214762.214771
https://aclanthology.org/2022.tacl-1.17
https://courses.cs.duke.edu/spring03/cps296.5/papers/ziv_lempel_1977_universal_algorithm.pdf
https://www.cs.bu.edu/fac/lnd/dvi/ZL-e.pdf
https://www.cs.bu.edu/fac/lnd/dvi/ZL-e.pdf

Table 9: Numerical values from Fig. 3. Methods that use 16-bit tokens (v=65k) have the same
uniform distribution performance as the 8-bit version (v=265). Note: One thousand million is used
over one billion to make comparison of FLOPs/byte values easier.

Dataset Size bits/byte FLOPs/byte
Bytes 25m 1.29 50.00M

113m 1.16 226.00M
403m 1.08 806.00M
2b 1.03 4,000.00M
uniform 8.00 -

SentencePiece 25m 1.12 11.69M
113m 1.01 52.82M
403m 0.94 188.37M
2b 0.87 934.84M
uniform 3.47 -

AC[v=256] 25m 1.46 15.11M
113m 1.46 47.17M
403m 1.46 152.81M
2b 1.46 734.60M
uniform 1.46 -

AC[v=65k] 25m 1.46 10.55M
113m 1.46 26.58M
403m 1.46 79.41M
2b 1.46 370.30M

StaticAC[v=256] 25m 4.61 28.90M
113m 4.61 130.64M
403m 4.61 465.90M
2b 4.61 2,310.00M
uniform 4.62 -

StaticAC[v=65k] 25m 4.60 14.45M
113m 4.60 65.32M
403m 4.62 232.95M
2b 4.62 1,160.00M

EqualInfoAC[b=16, v=256] 25m 1.47 24.80M
113m 1.23 90.96M
403m 1.09 309.01M
2b 0.99 1,510.00M
uniform 3.01 -

EqualInfoAC[b=16, v=65k] 25m 1.25 15.42M
113m 1.12 48.56M
403m 1.02 157.79M
2b 0.94 759.30M

GZip[v=256] 25m 2.34 22.42M
113m 1.93 101.35M
403m 1.69 361.43M
2b 1.56 1,790.00M
uniform 3.59 -

GZip[v=65k] 25m 2.92 11.19M
113m 2.69 50.56M
403m 2.48 180.31M
2b 2.26 894.85M

C The Amount of Raw Text Bytes Seen by M2

Table 13 shows the number of tokens and bytes found in the training dataset for each compression
method. During the data generation process, sequences of 10,240—generated by concatenating 128
C4 byte-tokenized documents together—are compressed. Some of these sequences, namely the final

28

Table 10: Numerical values from Fig. 5. Values for EqualInfoAC[b=16, v=256] and
EqualInfoAC[b=16, v=65k] can be found in Table 9. Note, EqualInfoAC[b=128, v=256] showed
slight improvements beyond the significant digits shown here as the model scales.

Dataset Size bits/byte FLOPs/byte
EqualInfoAC[b=32, v=256] 25m 2.05 20.33M

113m 1.94 70.76M
403m 1.83 236.95M
2b 1.65 1,150.00M

EqualInfoAC[b=32, v=65k] 25m 1.95 13.17M
113m 1.85 38.42M
403m 1.74 121.64M
2b 1.63 579.89M

EqualInfoAC[b=64, v=256] 25m 1.85 18.02M
113m 1.82 60.33M
403m 1.80 199.75M
2b 1.79 967.54M

EqualInfoAC[b=64, v=65k] 25m 1.82 12.00M
113m 1.80 33.13M
403m 1.79 102.76M
2b 1.76 486.19M

EqualInfoAC[b=128, v=256] 25m 1.71 16.85M
113m 1.71 55.02M
403m 1.71 180.84M
2b 1.71 873.68M

EqualInfoAC[b=128, v=65k] 25m 1.70 11.42M
113m 1.69 30.51M
403m 1.68 93.42M
2b 1.67 439.84M

Table 11: Numerical values from Fig. 11, comparing our multiple implementations of EqualInfoAC.

Dataset
Compression

Ratio Size bits/byte FLOPs/byte
EqualInfoAC[b=16, v=256] 2.66 25m 1.47 24.80M

113m 1.23 90.96M
403m 1.09 309.01M
2b 0.99 1,510.00M

EqualInfoAC[b=16, v=256] Zero 2.20 25m 1.50 28.73M
113m 1.25 108.73M
403m 1.11 372.36M
2b 1.00 1,820.00M

EqualInfoAC[b=16, v=65k] 5.31 25m 1.25 15.42M
113m 1.12 48.56M
403m 1.02 157.79M
2b 0.94 789.30M

EqualInfoAC[b=16, v=65k] Zero 4.40 25m 1.23 17.36M
113m 1.11 57.36M
403m 1.01 190.18M
2b 0.93 915.09M

sequence created from the tail of the concatenated docs, are too short to be compressed to the target
length of 512. Thus, the exact number of tokens in the dataset can vary slightly. With no padding,
each dataset would have been trained on 26,214,400,000 tokens, we see all settings are close to this
value, with the maximum deviation being EqualInfoAC[b=128, v=65k] with 1.06% fewer tokens.
All compression datasets are created from the same source sequences, thus the underlying byte

29

Table 12: Variance in performance is low. Even with maximum changes between runs—different
evaluation samples, different training orders, and different parameter initialization—there is very
little variance in final performance. Statistics were calculated over 5 different 25m parameter training
runs for each method.

Method bits/byte
Bytes 1.2899± 0.0020
SentencePiece 1.1171± 0.0006
AC[v=256] 1.4573± 0.0001
StaticAC[v=256] 4.6936± 0.0005
EqualInfoAC[b=16, v=256] 1.4724± 0.0044
EqualInfoAC[b=32, v=256] 2.0457± 0.0058
EqualInfoAC[b=64, v=256] 1.8494± 0.0052
EqualInfoAC[b=128, v=256] 1.7121± 0.0003
GZip[v=256] 2.3374± 0.0061

sequences compressed by weaker methods are prefixes of the underlying sequences compressed by
stronger methods.

Table 13: Compression ratios (bytes / tokens) achieved by various methods. For EqualInfoAC, the
compression ratio increases with increased window size. Small differences in the number of non-
padding tokens are due to noise in the data generation process—some randomly selected documents
are too short to be compressed to the target length of 512.

Method
Compression

Ratio Tokens Bytes
Bytes 1.0 26,188,185,600 26,188,185,600
SentencePiece 4.28 26,112,163,840 111,728,726,639
AC[v=256] 5.49 26,083,328,000 143,197,470,720
StaticAC[v=256] 1.73 26,175,078,400 45,282,885,632
GZip[v=256] 2.23 26,175,209,472 58,370,424,832
EqualInfoAC[b=16, v=256] 2.66 26,154,106,880 69,569,924,301
EqualInfoAC[b=32, v=256] 3.49 26,109,542,400 91,122,302,976
EqualInfoAC[b=64, v=256] 4.16 26,110,853,120 108,621,148,979
EqualInfoAC[b=128, v=256] 4.61 26,078,085,120 120,219,972,403
AC[v=65k] 10.98 25,952,256,000 284,955,770,880
StaticAC[v=65k] 3.46 26,133,135,360 90,420,648,346
GZip[v=65k] 4.47 26,122,649,600 116,768,243,712
EqualInfoAC[b=16, v=65k] 5.31 26,091,192,320 138,544,231,219
EqualInfoAC[b=32, v=65k] 6.97 26,049,249,280 181,563,267,482
EqualInfoAC[b=64, v=65k] 8.33 26,004,684,800 216,619,024,384
EqualInfoAC[b=128, v=65k] 9.22 25,936,527,360 239,134,782,259

D Scaling Curves with Scaled Training Data

[30] found that when scaling models, the training data should be scaled with the model size. As such,
when comparing settings with constant training FLOPs, a large part of the FLOPs budget should be
used by adding more training data. We apply this technique to compensate for our 2b models being
under-trained by plotting the scaling curves in Fig. 10, where the smaller models are trained with less
data, proportional to their size. Models with 25m parameters only train for 3k steps, 113m for 11k,
403m for 40k, and 2b for 200k steps. Otherwise, the settings match those in Fig. 3. Numerical values
used in the graph can be found in Table 14.

30

107 108 109

Inference FLOPs/byte

1

5

10

bi
ts

/b
yt

e

Bytes
ArithmeticCoding[v=256]
StaticAC[v=256]
EqualInfoAC[b=16, v=256]
GZip[v=256]

SentencePiece
ArithmeticCoding[v=65k]
StaticAC[v=65k]
EqualInfoAC[b=16, v=65k]
GZip[v=65k]

Figure 10: Training language models over compressed text while scaling training data with model
size results in steeper slopes. When scaling model size, it has been found that the training data
should be scaled proportionally [30]. We apply this scaling technique by plotting values for smaller
models at earlier training steps. The trends are similar to Fig. 3, even down to things like where the
EqualInfoAC[b=16, v=256] line crosses the Bytes baseline (between the 25m and 113m parameter
models).

Scaling the training data adjusts the absolute slopes of the lines for all models that learn. Models
that do not learn still only predict a uniform distribution. The trends between settings are unchanged.
Thus we opt to plot the versions where training data is held constant across model sizes.

E GZip Headers and Footers

GZip compressed documents have both a header—two bytes that identify the file type—and a footer—
two bytes representing the Adler-32 checksum [18] of the input. We trained M2 models on versions
of the dataset where the header/footer are removed and versions where it is kept. We see that while
including the header/footer offers a slight performance increase—which is unsurprising as the header
specifically is consistent across examples—it is not enough to change GZip compression placement
among compression methods. Nor does it explain why GZip is the only compression method where
the 16-bit vocabulary does not help. In this work, we use the version of GZip datasets that include
the header and footers.

F Arithmetic Coding Details

While it is easiest to imagine the narrowing of the bit interval process in Arithmetic Coding as a
second step after the character interval In is found, it is also possible to calculate Bj(b) intervals “on
the fly”, as the regular intervals are being calculated. When a bitstream interval Bj(b, x) encloses the
most recent interval Ii, that interval is selected as the continuation of the bitstream, b—locking in
the value of the bitstream. At this point, the bitstream is the compressed value of the sequence until
character xi. If the most recent interval Ii overlaps with both Bj(b, 0) and Bj(b, 1), or one interval is
enclosed by Ii, then the next interval Ii+1 needs to be calculated. After that, more bit intervals B>j

31

Table 14: Numerical values from Fig. 10. Values for the uniform distribution and FLOPs/byte values
can be found in Table 9.

Dataset Size Step bits/byte
Bytes 25m 3k 1.62

113m 11k 1.36
403m 40k 1.18
2b 200k 1.03

SentencePiece 25m 3k 1.35
113m 11k 1.15
403m 40k 1.00
2b 200k 0.87

AC[v=256] 25m 3k 1.46
113m 11k 1.46
403m 40k 1.46
2b 200k 1.46

AC[v=65k] 25m 3k 1.46
113m 11k 1.46
403m 40k 1.46
2b 200k 1.46

StaticAC[v=256] 25m 3k 4.62
113m 11k 4.62
403m 40k 4.62
2b 200k 4.62

StaticAC[v=65k] 25m 3k 4.62
113m 11k 4.62
403m 40k 4.61
2b 200k 4.61

EqualInfoAC[b=16, v=256] 25m 3k 1.86
113m 11k 1.50
403m 40k 1.21
2b 200k 0.99

EqualInfoAC[b=16, v=65k] 25m 3k 1.62
113m 11k 1.31
403m 40k 1.10
2b 200k 0.94

GZip[v=256] 25m 3k 2.95
113m 11k 2.48
403m 40k 1.97
2b 200k 1.56

GZip[v=65k] 25m 3k 3.30
113m 11k 3.08
403m 40k 2.72
2b 200k 2.26

Table 15: Removal of the GZip header and footer results in minimal performance differences.

Method bits/byte
GZip[v=256] 2.33

−header/footer 2.35
GZip[v=65k] 2.91

−header/footer 2.92

are calculated until a bit interval is enclosed by Ii+1 or the overlap conditions outlined above happen
again. This is repeated until a bit interval that is enclosed by the final interval is found.

32

This fact is critical in finite precision implementations. Once a bit is locked in, it can be emitted. This
allows for the rescaling of the current interval and is how over/underflow is avoided.

G Evaluation Details

In our experiments, different settings have different vocabulary size, tokenization, and has a different
amount of underlying text due to variations in compression rate. Thus, they are not directly com-
parable using “per-token” versions metrics like the cross-entropy, negative log likelihood loss, or
perplexity. To address this, we convert our token-level negative log likelihood loss, ℓ, to byte-level
negative log likelihood loss by dividing the loss by that compression method’s specific token-level
compression rate, ℓbyte = ℓ/(LiT /LoT) = ℓ(LoT /LiT). Note that we use “per byte” metrics over
“per character” metrics as there is ambiguity as to what counts as a character when working with
UTF-8 Unicode.

As is common in evaluation of work related to compression, instead of the negative log likelihood loss
ℓbyte (in the unit of “nats”) per byte, we use bits/byte. This would require using log base two instead
of the natural log during the negative log likelihood calculation, but this conversion can be done after
the fact, bits/byte = log2(e

ℓbyte) = ℓbyte/ ln(2). Note that this results in the same conversion used in
[24], bits/byte = ℓbyte/ ln(2) = (LoT /LiT)ℓ/ ln(2), when the input tokens represent bytes.

As one of the main advantages of an M2 model that processes compressed text is that it needs to
be run over fewer tokens, we also compare models based on the amount of FLOPs required during
inference. Different compression methods result in different sequence lengths for the M2 model
to process. Therefore, we need to standardize our FLOPs measurement to the byte-level so that
it is comparable across methods. We start with FLOPs/token—approximated by 2× num_params
(not including embedding parameters) following [35]—and divide it by that method’s token-level
compression rate to get the FLOPs/byte, just like the bits/byte conversion. For methods that require
running an M1 model over each byte, the FLOPs/byte cost of the M1 model is added. Note, while
there is a computational cost to running GZip over the input text, we ignore it as it is insubstantial
compared to the cost of running model inference.

Evaluation of language models is often done by running the model on the entire validation set, moving
the sliding window formed by the model’s context window by a single token at each step. This yields
stronger models by providing the most context possible when making predictions for a token. As
we care about relative performances between methods, opposed to absolute performance, we opt to
evaluate the model on a sample of the C4 validation set. During evaluation, the model is run over 20
batches, resulting in predictions for 2,621,440 tokens. These tokens represent different amounts of
text based on the compression method, thus it would have been impossible to run evaluation on the
same bytes for all methods. We trained five 25m parameter models with different seeds and found that
the final performance is very stable. The largest standard deviation was 0.0061. Thus, the variance
introduced from sampling the validation set is negligible. See Appendix B for more information.

H Alternative Compression Methods

H.1 Equal-Text Windows

We also considered what is essentially the inverse of Equal-Info Windows—Equal-Text Windows.
Instead of consuming a variable amount of text and outputting a consistent number of bits, Equal-Text
Windows feed a consistent amount of text into the Arithmetic Coder which is compressed to a variable
number of bits.

To deal with this variability, we thought M2 would require delimiter tokens between windows in
order to tell which tokens are part of the same independently compressed chunk. We thought this
would hurt the compression rate too much, especially for the short AC compressed windows that we
found most effective in Fig. 5.

Further exploration of this method, especially to see if the delimiters are actually required, would
be interesting future work as the Equal-Text Windows algorithm is much simpler than Equal-Info
Windows.

33

H.2 Huffman Coding

We also considered using Huffman Coding [32] as a baseline compression implementation. As most
implementations use static probabilities for characters, we thought the compression rate would be
too low to be competitive. With static Huffman Coding, it is much easier to create a map between
bitstream subsequences and characters, which may result in being more learnable by M2 models.
However, this is because the coding component assigns each character a whole number of bits,
resulting in a less optimal coding compared to Arithmetic Coding. Huffman Coding can be made
adaptive by updating the induced codebook periodically, based on newer data. When considering
bit-level compression, adaptive Huffman Coding performs similar to static Huffman Coding [45].
However, when considering token-level compression, and the fact that the adaptive distribution will
come from M1, not unigrams of the recent data, training M2 models on adaptive Huffman Coding
could be interesting future work. As Huffman coding is part of the GZip algorithm, we opted to not
explore using just Huffman Coding.

H.3 Asymmetric Numeral Systems

Another compression algorithm we considered was Asymmetric Numeral Systems (ANS) [19]. ANS
has strong coding performance and is amenable to adaptive probabilities. The internal state is only a
single natural number, which may be easier for an LLM to track than the two real numbers used in
AC. However, the encoding and decoding algorithm are more like a stack, where the encoder runs
left to right while the decoder runs right to left. By the time the full input is seen, there are no more
computation steps for the LLM to actually decode. Thus, we opted to not explore ANS in this work.
However, the simpler state is appealing and using ANS for compression would be of interest as future
work.

I M2 Can Handle Padding Zeros at the End of a Window

In the implementation of EqualInfoAC[b=W], each output window must end up being W bits.
Therefore, when the compression of an additional character would result in a bitstream of more than
W bits, padding of the compressed bitstream without that additional character must be done.

In cases where the final character in the window only adds zeros to the bitstream, it is unclear at
first glance if that final character was included in the window, or if it was omitted and the trailing
zeros are all padding. However, the compression scheme is still lossless if we are consistent in our
encoding. By always including the most input characters possible in each window, we know that,
during decoding, if the addition of a final character (which is compressed to all zeros) still results
in the same compressed bitstream, then that final character is part of that window. The decoding
algorithm also knows when to stop adding characters to input—when the addition of a new character
would generate more than W bits.

This kind of padding is present in many Arithmetic Coding implementations and is generally solved
by either giving the AC decoder the original input sequence length and the compressed message, or
by the AC decoder using a special termination character. These fixes aim to identify padding in a
single run of the AC decoder, but would be difficult to apply in our setting. Passing the number of
tokens present in a window to M2 would be possible during training, but it would make inference
much more complex (requiring a solution such as M2 generating fertility scores that specify how
many characters the generated tokens represent [8]). As such, we achieve lossless compression by
allowing the AC decoder to be run multiple times as the decoding algorithm nears the end of the input,
incrementing the sequence length until we find the sequence that matches the compressed output.

This window decoding algorithm is not well aligned with how transformers processes data. It
essentially involves a look-ahead where the AC decoder is run over prospective inputs and if they
are inconsistent with the compressed tokens, backtracking is done and decisions about the previous
tokens are made. In contrast, the transformer has a fairly fixed budget when processing a single
window, just the layers in the model and the part of the sequence that is inside that window.

An alternative windowed compression scheme more inline with transformer computation is to avoid
input characters that compress to all zeros. During compression, when a window is about to be
emitted and an additional character would fit into the window, but compresses to all zeros, we opt
to not include this character. That is, we compress as many characters into the window as possible,

34

while ensuring that each new character results in a change in the bitstream compared to the previous
value (plus padding). This results in a much simpler decoding algorithm where new input characters
are added until the correct compressed bitstream is emitted. As we always include the least number of
characters that can possibly output this bitstream, we know the input without needing to look-ahead
at the result of compressing the next character. As our normal implementation compresses the most
number of tokens possible into the current window, this version results in a reduction in compression
rate, dropping from 2.66 to 2.20.

108 109

Inference FLOPs/byte

1.0

1.1

1.2

1.3

1.4

1.5

1.6

bi
ts

/b
yt

e

EqualInfoAC[b=16, v=256]
EqualInfoAC[b=16, v=256] (Zero)
EqualInfoAC[b=16, v=65k]
EqualInfoAC[b=16, v=65k] (Zero)

2 4 6
bytes/step

1.0

1.1

1.2

1.3

1.4

1.5

1.6

bi
ts

/b
yt

e

Figure 11: The model is able to effectively discern between padding and trailing zeros that represent
an input character in our implementation of EqualInfoAC. When using EqualInfoAC[b=16, v=256],
M2 models trained on data compressed with our original implementation perform better. Using
EqualInfoAC[b=16, v=65k], the absolute bits/byte performance is greater using the new implemen-
tation, but the reduction in compression rate means the original implementation is still preferred
when the inference cost is considered. This is especially clear in the right graph, where the original
implementation’s superior compression rate is obvious.

In Fig. 11 we see a comparison when training M2 models over data compressed with each method.
We see that when using the new implementation with EqualInfoAC[b=16, v=256], our default
implementation is much better. Interestingly, while the EqualInfoAC[b=16, v=256] version fails
to improve, when using EqualInfoAC[b=16, v=65k], the new compression implementation makes
slight, but still greater than one standard deviation, improvement in terms of bits/byte. However, the
reduction in the compression ratio means training models over this implementation will lose some of
the computational advantages that training over compressed text yields. Thus, it fails to fully eclipse
the original implementation. Numerical values can be found in Table 11. It is clear that the model is
able to discern between trailing zeros that represent characters and those the represent padding. Thus,
we opt to use the implementation that maximized the compression ratio throughout this work.

J Entropy Estimation

To account for noise in the entropy estimation, we partition the data into 100 disjoint samples. This
results in each partition being a sample of ~2 billion symbols for n-grams and ~130 million for tokens.
We then calculate the entropy for each partition and the KL divergence between the entropy of the
0.5, 0.50, and 0.95 quantile points and a uniform distribution. These quantiles are then plotted on
Fig. 9 to illustrate sampling noise—90% of sampled entropies fall within these bounds. The log
scaling of Fig. 9 hides some of the noise trends, namely that the noise grows with n and that settings
like GZip and EqualInfoAC are noisier than AC and RNG. These trends are seen in Fig. 12 where the
entropy has been normalized based on the mean entropy calculated across the partitions.

The maximum likelihood, or plug-in, estimator of entropy, Ĥ = −
∑

x∈X p̂(x) log2 p̂(x), is nega-
tively biased—in fact, all entropy estimators are biased [48]. The Miller-Madow estimator attempts

35

2 4 6 8 10 12 14 16
Bit N-grams

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

No
rm

al
ize

d
En

tro
py

1e 5

RNG
ArithmeticCoding[v=256]
StaticAC[v=256]
GZip[v=256]
EqualInfoAC[b=16]
EqualInfoAC[b=64]

(a) bit n-grams counting all overlapping occurrences

2 4 6 8 10 12 14 16
N-Bit Tokens

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

No
rm

al
ize

d
En

tro
py

1e 5

(b) n-bit tokens following our M2 tokenization

Figure 12: The amount of noise in the entropy estimate grows as the length of bit segments grow.
Larger segmentations of the bitstream result in larger vocabularies and therefore require larger sample
sizes for accurate entropy estimates. For each setting, we plot the 5%, 50%, and 95% percentile
intervals for the entropy, normalized by the average entropy across partitions. We see that the noise
grows with n and that settings like EqualInfoAC[b=16] are noisier than AC, despite this not being
apparent in Fig. 9.

2 4 6 8 10 12 14 16
Bit N-grams

10 9

10 7

10 5

10 3

10 1

KL
(o

bs
er

ve
d

||
un

ifo
rm

)

RNG
ArithmeticCoding[v=256]
StaticAC[v=256]
GZip[v=256]
EqualInfoAC[b=16]
EqualInfoAC[b=64]

(a) N-Grams

2 4 6 8 10 12 14 16
N-Bit Tokens

10 9

10 7

10 5

10 3

10 1

KL
(o

bs
er

ve
d

||
un

ifo
rm

)

(b) Tokens

Figure 13: Bias corrected KL divergence between the observed and uniform distributions for different
segmentations of the bitstream. This plot is similar to Fig. 9, however, the KL divergence calculations
use the entropy of the observed distribution after applying the Miller-Madow bias correction. After
applying bias correction, we see that the expected 0 KL divergence for the RNG baseline is now
within the 90th percentile bounds. However, this can results in an, incorrect, negative KL divergence
which is removed from the graph. Thus the RNG 50th percentile is shown as a scatter plot rather
than a broken line. In this setting it is clear that the 50th percentile for AC[v=65k]s above the 50th
percentile for RNG, however, it is hard to disentangle the two as their 5th percentile lines are similar.

to correct for this bias by adding the approximate bias, cased by sampling, to the plug-in estimator.25

The Miller-Madow estimator is given by ĤMM = Ĥ +
ˆ|V |−1
2m . In this case, m is the size of the

sample used to estimate entropy and ˆ|V | is the estimated vocabulary size. In some applications, the
vocabulary may often need to be estimated—for example new words may be added to languages—but
in this case our vocabulary size is always 2n where n is the size of the current segmentation.

25There are other methods for entropy bias correction such as [15] based on bootstrapping [20], however, with
the size of the C4 training data, the required resampling was not possible. Thus, we use Miller-Madow in this
work.

36

When we plot the KL divergence between the Miller-Madow estimated entropy and the uniform
distribution, we see that the percentile interval for the RNG baseline now includes 0, the KL divergence
we expect given the data was generated from random and independent bits. As bias correction is
approximate, it is possible that, for a given sample, the correction will result in an entropy greater
than the maximum entropy possible for a given vocabulary size. Given that KL divergence between a
distribution P and the uniform distribution U simplifies to the entropy of U minus the entropy of P ,
KL(P ||U) = H[U]− Ĥ[P] = log2 |V |− Ĥ[p], this results in a negative KL divergence, which is not
allowed. These points get removed from the graph during log scaling and the resulting 50% percentile
line for RNG data looks strange. Therefore, we only plot points with positive KL divergence in
Fig. 13. The Miller-Madow estimation of entropy makes it clear that the 0.5 entropy quantile for AC
compressed data is much higher than the 50% percentile for RNG data. Additionally, for n > 2, the
AC entropy is statistically significantly less than the RNG entropy; however, differences in the mean
entropy only start to appear after ~8 decimal places. This slight difference in mean, coupled with
the fact that the 5% percentiles are similar, means we cannot confidently assert the model will be
able to easily distinguish the AC compressed data from random data. Given that we care about the
differences between the entropy of data compressed with different methods—which is invariant to
bias—and the strange plots when values are less than 0, we opt to plot the plug-in estimator in Fig. 9
instead of the Miller-Madow estimator.

K Analysis Implementation

Matplolib [33] and Seaborn [71] were used to make all the included graphs.

Statistical significance tests were done using Welch’s t-test [72] using the function
scipy.stats.ttest_ind_from_stats from SciPy [69]. We used p < 0.05 as the statistical
significance threshold.

L Corner Cases of Tokenization lead to Unstable Mappings

There are some cases where SentencePiece does not have stable text→ token mappings when looking
at various substrings. This generally occurs when a singular and plural version of a noun are both
common enough to be tokenized into a single token. An example from the T5 vocabulary [52]
is “chair”→ [3533] and “chairs”→ [6406]. When you look at the surface text substring “chair”,
it seems to map to multiple tokens, however when you look at the full surface term “chairs” the
stability returns. This is in contrast to a byte-level vocabulary where the text “chair” always maps to
[102, 107, 100, 108, 117], even as part of the text “chairs” where an extra [118] is appended
to the end. While the loss of shared representations of clearly related concepts in unfortunate, the
performance of modern models based on this kind of tokenization shows that it is well handled by the
model. While these edge cases exist, they are rare enough that the SentencePiece tokenizer should be
considered stable.

Similarly, there are cases where the initial token→ text mapping in a EqualInfoAC window can be
unstable. In the case where there is a character whose bitstream crosses the token boundary—the
purple characters in Fig. 7—only the prefix that is part of the initial token will determine the value
of that token. It is possible that there may be other places in the input text where the characters
wholly contained within the initial token match but the character that crosses the token boundary
may be different. If the prefix of that character’s bitstream, which is part of the initial token, matches
the previous case but of the bitstream, which is in the following token, do not it is possible to have
the same initial token while the underlying text is different. When this happens, the text prefix is
still stable and the notion of mapping a compressed token to exact characters is not well defined, as
there are always cases there a character is spread across two tokens. Note, this only occurs at token
boundaries; EqualInfoAC[b=16, v=65k] is stable as no characters cross windows. Therefore, we
consider EqualInfoAC stable enough to enable learnability by M2.

Interestingly, [40] point out this same issue, where a fixed size view of a variable length stream can
cause false equivalencies when prefixes match. Similar to our findings, they find the models do have
some limited ability to deal with these situations.

37

M Window Text Patterns and Token Positions

We tokenize 20 documents of length 1,024 with EqualInfoAC[b=16, v=256] and find that all 256
possible token values occur multiple times, both as the first and as the second token within the
window. When tokenized with EqualInfoAC[b=16, v=65k], 34.5% of attested tokens appear more
than once. Table 16 shows all the window text for repeated tokens.

Table 16: The deduplicated window text from all instances of tokens that appear multiple
times when we tokenized 20 documents of length 1,024 (20,480 compressed tokens) with
EqualInfoAC[b=16, v=256].

Token
Window
Position Window Text

185 1 [or] / [or a] / [or ac] / [or al] / [or cr] / [or d] / [or f] / [or h]
[or hi] / [or i] / [or k] / [or ma] / [or pr] / [or r] / [or s] / [or se]

[or su] / [or t] / [or to] / [or v] / [or wha] / [or y] / [or yo] / [or, t]
[or-] / [or.] / [ora] / [orc] / [orce] / [ord] / [ord a] / [order]

[ore a] / [ore e] / [ore ev] / [ore g] / [ore i]
2 [4] / [of F] / [records] / [. Lo] / [Alt] / [OI] / [ase] / [at y]

[cian] / [cri] / [d. I] / [ery] / [h de] / [hen s] / [ides] / [n ne]
[oft] / [om i] / [onte] / [opp] / [pir] / [rev] / [reve] / [s may]

[tion a] / [y do] / [y t]

151 1 [le] / [le s] / [le t] / [le.] / [lea] / [lec] / [led] / [led]
[led t] / [leg] / [lege] / [leh] / [lem] / [leme] / [lems] / [len]

[ler] / [les] / [less] / [let] / [lett] / [level] / [lew] / [ley] / [lf]
2 [all] / [nut] / [this] / [un] / [. I w] / [Ni] / [as t] / [ceed]

[choos] / [e Mi] / [e-li] / [etti] / [imag] / [ion a] / [k a] / [ne a]
[ng up] / [niversi] / [npo] / [nt pr] / [pi] / [rvices] / [s T] / [s your]

[s?] / [so c] / [stag] / [thou] / [thoug] / [ust] / [ust]

38

	Introduction
	Motivation and Background
	Advantages of Training over Neural-Compressed Text
	Challenges of Training over Compressed Text
	Compression
	Arithmetic Coding
	Related Work

	Methods
	Training Data
	Training M1
	Compression Methods
	Tokenization of Compressed Text
	Training M2 on Compressed Data
	Baselines
	Numerical Stability
	Evaluation

	Results
	Additional Experiments
	Bitstream tokenization is not the main source of difficulty
	Transformers struggle to learn Arithmetic Coding
	Larger vocabulary helps beyond increasing the compression ratio

	Analysis
	EqualInfoAC is less stable and less semantic than SentencePiece
	AC decoding is learned step-by-step
	Learnable distributions are less uniform

	Conclusion
	Bibliography
	Numerical Values
	Variance
	The Amount of Raw Text Bytes Seen by M2
	Scaling Curves with Scaled Training Data
	GZip Headers and Footers
	Arithmetic Coding Details
	Evaluation Details
	Alternative Compression Methods
	Equal-Text Windows
	Huffman Coding
	Asymmetric Numeral Systems

	M2 Can Handle Padding Zeros at the End of a Window
	Entropy Estimation
	Analysis Implementation
	Corner Cases of Tokenization lead to Unstable Mappings
	Window Text Patterns and Token Positions

